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Abstract

This paper investigates the extent of market integration and exchange rate

pass-through, as well as market factors that may be associated with deviations

from perfect market integration and pass-through. To address the shortcom-

ings of existing models of spatial market integration, we employ procedures

outlined in Yan (2023) for inference and model selection, utilizing the debiased

(or desparsified) LASSOmethod for high-dimensional threshold regression. Our

results support the integration of global corn markets, especially when account-

ing for the existence of thresholds. We identify significant relationships among

several variables representing domestic and world economic conditions.
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1 Introduction

Efficient markets are expected to eliminate any potential for riskless profits through

arbitrage and trade, a result known as the ”Law of One Price” (LOP). Economic ar-

bitrage relies on the principle that prices of related goods should not arbitrarily differ

from one another over the long run. The general implication here is that prices for

homogeneous products at different geographic locations in otherwise freely function-

ing markets should differ by no more than transport and transactions costs. However,

the existence of transactions costs can introduce a threshold effect, where deviations

in prices above a certain threshold are necessary to trigger price movements. In re-

cent years, studies analyzing this phenomenon have focused on developing nonlinear

models that can better capture the effects of unobservable transaction costs in spatial

price linkages. The motivation behind using such models is to better understand the

dynamics of market integration and the role of transaction costs in the presence of

regime changes. The use of nonlinear models has been largely driven by the appli-

cation of threshold modeling techniques. These models are based on the idea that

transaction costs and other barriers to spatial trade may lead to regime switching,

with alternative regimes representing the trade and no-trade equilibria. This idea

has been operationalized through various econometric techniques and model specifi-

cations.

Threshold autoregression (TAR) models have indeed had a significant impact on

the analysis of asymmetric price transmission in agricultural economics. These mod-

els have been developed to capture the nonlinear dynamics of market integration and

account for the effects of unobserved transaction costs that can affect spatial price

linkages. A common approach to threshold modeling often involves an autoregressive

model of the price differential. The study conducted by Goodwin and Piggott (2001)

examined corn prices at local markets by combining a threshold structure with an

error-correction model. Goodwin et al. (1990) noted that delivery lags that extend

beyond a single time period may imply arbitrage conditions that involve noncon-

temporaneous price linkages. Based on this idea, Lence et al. (2018) examined the

performance of the threshold cointegration approach, specifically Band-TVECM, in

analyzing price transmission in an explicit context where trade decisions are made

based on the expectation of final prices because trade takes time. In addition to
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the threshold model, Goodwin et al. (2021) applied generalized additive models to

empirical considerations of price transmission and spatial market integration.

The extensive literature addressing price transmission and market integration has

largely focused on simple comparisons of prices in geographically distinct markets. In

rare cases when the consideration applies to international market comparisons, ex-

change rates may also be considered. It is, however, possible that a number of other

variables may be relevant to market linkages. These variables may largely proxy for

unobservable transactions costs or other reasons for price differences, such as govern-

ment policies and product heterogeneity. The puzzle confronting the analyst is which

of these variables makes valid and useful proxies for the unobservable reasons as to

why prices may differ. We attempt to address this puzzle by considering data-driven

methods for selecting the optimal set of variables relevant to an understanding of

price linkages in international maize markets. Specifically, we apply a high dimen-

sional threshold model to examine the effect of exchange rates and market factors

on price linkages among spatially distinct world maize markets. Such an application

is a natural methodological extension of existing empirical studies on spatial market

integration models.

Although exchange-rate pass-through, i.e. the degree to which exchange rate

movements are reflected in prices has long been a question of interest in international

economics, there is limited literature that examines exchange-rate pass-through in

global agricultural commodity markets. One study by Chambers and Just (1981)

uses an econometric model of the wheat, corn, and soybean markets to investigate

the dynamic effects of exchange rate fluctuations on U.S. commodity markets. The

study finds that exchange rate fluctuations have a significant real impact on agricul-

tural markets, particularly on the volume of exports and the relative split between

exports and domestic use of these commodities. The econometric model developed in

the study shows that agricultural prices are sensitive to movements in the exchange

rate, with short-run adjustments being more dramatic than longer-run adjustments.

Varangis and Duncan (1993) employed a system of equations, including one for the

Japanese export price and another for the US producer price, to estimate the impact

of changes in the yen/dollar exchange rate and other factors on steel prices. It is

worth noting that this trade is unidirectional, as Japanese steel is consistently im-

ported into the USA. The study demonstrates that such exchange rate fluctuations
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are not fully passed through to steel prices. The pricing decisions of US steel produc-

ers are primarily influenced by changes in their production costs and the US index of

industrial production, rather than fluctuations in the yen/dollar exchange rate.

International trade in basic commodities is generally invoiced in US dollar terms.

At first glance, this may seem to imply that exchange rates are irrelevant to market

linkages. However, assuming that the commodities are valued in local currencies after

being imported suggests that exchange rates may still be relevant to price linkages.

We discuss this point in greater detail below.

Barrett and Li (2002) examine actual trade flows as a factor for assessing spa-

tial market integration. They note that empirical tests should differentiate between

the notions of spatial market integration and a competitive market equilibrium. The

latter concept refers to market conditions where no trade occurs because arbitrage

conditions do not provide opportunities for profitable trading. The authors highlight

that prices in two segmented markets might react to exogenous factors like inflation

or climatic conditions without representing a spatial equilibrium in markets. A re-

cent overview from the World Bank Rebello (2020) addresses the factors influencing

spatial market integration. The overview mentions the cooperation among policy-

makers on matters such as trade and investment policies, migration, transportation

infrastructure, macroeconomic policy, natural resource policy, and others related to

”shared sovereignty.” Furthermore, the overview highlights the critical role of regional

integration in policy reforms, contributing significantly to overall peace and security.

The integration of world markets for grains and oilseeds has been of interest for

many years. In recent years, the global maize market has been dominated by major

exporters such as the United States, Argentina, and Ukraine, which have consistently

ranked among the top maize producers and exporters worldwide. The US, the largest

producer, alone accounts for over one-third of global maize exports. Argentina and

Ukraine collectively account for over one-fourth of global maize exports. The dom-

inance of these countries in the global maize market is representative of the market

and makes them candidates for studying price transmission and market integration.

They play a crucial role in global maize prices and influencing maize markets world-

wide. Likewise, the extent to which distortions arise due to incomplete pass-through

of exchange rate shocks has been an important indicator of the overall functions of

markets.
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In addition to prices and exchange rates, other market factors can be conceptually

related to market linkages, such as aggregate economic indicators like industrial pro-

duction, trade policies, and exogenous shocks, such as the recent pandemic, interest

rates, and nominal inflation rates in each market. These factors may be associated

with deviations from perfect market integration, as they can affect the costs of trans-

portation, communication, and transactions between markets, as well as the demand

and supply conditions in each market. Understanding the effects of these market fac-

tors on price linkages is essential for policymakers and market participants to make

informed decisions about trade, investment, and risk management.

LASSO (least absolute shrinkage and selection operator) is a regression technique

that uses shrinkage methods for variable selection. LASSO employs L1 regularization

and shrinkage techniques to penalize the model based on the absolute value of param-

eter estimates. It is a valid approach for identifying an optimal model specification

by selecting the variables that contribute the most to explaining a regression-type

relationship. Although LASSO models have been widely used in economics studies,

the shrinkage bias introduced due to the penalization in the LASSO loss function

can affect the properly scaled limiting distribution of the LASSO estimator. There-

fore, to conduct valid statistical inference, we need to remove this bias. This paper

uses the debaised LASSO method for high dimensional threshold regression, recently

developed by Yan (2023) to model the nonlinearity in the spatial price integration

models. The fact is that existing literature on price transmission and exchange rate

pass-through has developed from simple regression models to nonlinear specifications

that allow differential impacts on price linkages. These differential effects are often

identified using smooth or discrete threshold models.

2 Econometrics Models of Spatial Market Integra-

tion

Spatial market integration in agricultural product markets has been extensively stud-

ied in the literature. Consider a commodity traded in common currency in two

regional or international markets represented by location indices j and k. The indi-

vidual market prices are denoted by P j and P k, respectively. The arbitrage condition
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of perfect market integration reflects the equation P j
t /P

k
t = 1, abstracting from trade

and transportation costs. This condition has been adjusted to account for the wedge

between prices due to transaction or transportation costs, which may differ signif-

icantly in regional markets. The general representation for this adjusted arbitrage

condition is 1/(1− κ) ≤ P j
t /P

k
t ≤ 1− κ, where κ represents the proportional loss in

commodity value due to transaction or transportation costs (0 < κ < 1). The greater

the distance between locations j and k, the closer κ is to one. It should be noted

that many factors may be relevant to price differences across markets. Most existing

studies have only considered simple price relationships. An important distinction ex-

ists between transportation and transactions costs, which include transport costs as

well as other factors that contribute to price differences. These factors could include

variables associated with economic and trade policies, product characteristics, and

risk.

Many spatial economic models utilize the iceberg trade cost proposed by Samuel-

son (1954), which assumes that part of the produced output representing the material

costs of transportation melts away during transportation. That is, after taking nat-

ural logarithms and denoting pjt = lnP j
t , the inequality is often presented as

|pjt − pkt | ≤ | ln (1− κ)|. (2.1)

The inequality (2.1) is generally considered to reflect two distinct states of the mar-

ket. The first state corresponds to a condition where there is no profitable trading,

with |p1t − p2t | ≤ | ln (1− κ)|. Under conditions of trade or profitable arbitrage op-

portunities, the condition holds as |pjt − pkt | > | ln (1− κ)|. The speed at which the

market adjusts to such deviations from the arbitrage equilibrium is often used as a

measure of the degree of market integration. Typically, these discrete arbitrage and

no-arbitrage conditions are represented using threshold models, where the threshold

represents an empirical measure of the transaction cost, | ln (1− κ)|. Bidirectional

trade models may allow for different thresholds depending on which market price is

higher.

Over time, log price differentials within the band limits are expected to follow

a unit root process. Conversely, log price differences outside the band are expected

to be mean-reverting, which suggests the existence of a transactions cost band, as
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assumed in the literature.

A wide literature has examined spatial market integration in world markets for

agricultural commodities. Likewise, a large related literature has examined how

shocks to exchange rates affect domestic and export prices, a phenomenon known

as ‘pass-through’. If a shock to exchange rates is fully reflected in adjustments to

prices, the shock is considered to have been fully passed through. Most empirical

studies of market integration and exchange rate pass-through assume a linear rela-

tionship, as represented by

pjt = α + βpkt + γ2,0π
jk
t + εt, (2.2)

where pjt is the price in market j in time period t and πjk
t is the exchange rate between

currencies in markets j and k, all in logarithmic terms.

Perfect integration is implied if α = 0 and β = 1. In cases where prices are

invoiced in different currencies, perfect integration also requires perfect exchange rate

pass-through, which is implied if γ2,0 = 1. If prices are invoiced in a common currency,

as is often the case when trade is conducted in US dollar terms, the exchange rate is 1

and thus the logarithmic value of zero eliminates the exchange rate effect1. However,

exchange rate distortions may still affect price linkages, which is implied if γ2,0 ̸= 0,

even if prices are quoted in a common currency. This could occur if imported goods

are moved into internal markets in which a different currency applies.

It is also essential to consider other market factors associated with deviations from

perfect integration. To this end, we consider an alternative version of equation (2.2)

that is expressed as:

pjt − pkt = γ2,0π
jk
t + γ3Z

jk
t + εt, (2.3)

where Zjk
t is a set of factors that may be conceptually relevant to price linkage, γ3 is

a vector of parameters corresponding to Zjk
t . These factors include exogenous shocks

such as exchange rates, interest rates, unemployment rates, and nominal inflation

rates in each of the markets. We do not know which, if any of these factors, is

likely to be relevant to price linkages. These factors largely proxy for unobservable

factors that may be related to price relationships, such as local policies, product

1If we define πjk
t as the exchange rate of 1 unit of currency in market j to the currency in market

k, a value of γ2,0 = −1 represents perfect exchange rate pass-through.
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heterogeneity, and unobservable transactions costs.

To further analyze spatial price linkages, we evaluate deviations from a price parity

condition, considering threshold effects of price differentials and isolated shocks in

spatially distinct markets. In addition to the conventional specification, we propose an

extension to this framework of spatial market integration that includes two regimes.

One regime represents a case of no trade, while another represents conditions of

profitable trade and arbitrage. The regime switch depends on a forcing variable,

usually a lagged price differential, expressed as:

∆(pjt − pkt ) =γ1(p
k
t−1 − pkt−1) + γ2,0∆πjk

t + γ3∆Zjk
t

+1{|pjt−1 − pkt−1| ≥ c}(δ1(pjt−1 − pkt−1) + δ2∆πjk
t + δ3∆Zjk

t ) + εt,
(2.4)

The parameters γ1 and δ1 reflect the degree of market integration. In particular, γ1

and δ1 represent the degree of ’error correction’ characterizing departures from price

parity, which are reflected in large values of pjt−1 − pkt−1. The threshold parameter

c represents the amount of proportional transaction costs that a price differential

must exceed to cross the threshold and trigger the “trade” regime adjustments. We

allow δ1,δ2,0 and δ3 to nonzero according to whether |pjt−1 − pkt−1| is within (i.e.,

|pjt−1 − pkt−1| < c ) or outside (i.e., |pjt−1 − pkt−1| ≥ c ) of a symmetric band

Differencing is employed in this study to measure short-run relationships between

variables. The first-difference model is utilized to avoid nonstationary variables, allow-

ing a focus on immediate changes between variables. Differencing captures short-run

dynamics, while the error correction process reflects longer-run relationships.

To assess the potential presence of transaction costs and other factors affecting

price relationships, we consider a multivariate threshold distributed lag model that

includes the price differential, exchange rate, and exogenous shocks as well as their
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lagged (past period) values, as follows:

∆(pjt − pkt ) =γ1(p
j
t−1 − pkt−1) +

L∑
l=0

γ2l∆πjk
t−l +

L∑
l=0

γ3l∆zjkt−l

+ 1{|pjt−1 − pkt−1| ≥ c}

[
δ1(p

j
t−1 − pkt−1) +

L∑
l=0

δ2l∆πjk
t−l +

L∑
l=0

δ3l∆zjkt−l

]
+ εt

t = {1, . . . , T},
(2.5)

where L represents the maximum possible lag, which may increase with the sample

size, slowly growing to infinity. We assume that the maximal lag order L is known.

A distributed lag model (Almon (1965)) is utilized to reveal both short- and long-run

dynamic effects between explanatory variables and response variables. Additionally,

we employ LASSO, a flexible and supervised learning method. When dealing with

time-lagged relationships, selecting the appropriate lag length is crucial in time series

modeling. Typically, a well-defined lag length is chosen, and all lags up to that period

are included in the model. However, in contexts like ours, where we investigate the

dynamic relationship between price linkages, exchange rates, and market factors in

agricultural commodities, the delivery time from one market to another spans several

weeks to months. Consequently, not all lags are considered equally important in

capturing price linkages in response to market shocks. In such scenarios, a distributed

lag model (DLM) with lag selection, facilitated by LASSO, proves to be more suitable.

LASSO’s ability to determine distributed lags through a data-driven search enables

a more precise representation of dynamic relationships in agricultural commodity

markets. This framework offers a richer evaluation of price dynamics and patterns of

adjustment.

Economic agents adjust their expectations of price differentials based on the level

of transaction costs that pertain to previous periods. If the price differential exceeds

certain thresholds, agents anticipate profitable gains from arbitrage and trade. The

specified model offers the advantage of capturing simultaneous relationships between

exchange rates and other relevant variables. Linear modeling techniques may not

accurately capture the nonlinearities present in the model. Therefore, it is essential

to investigate the impact of transaction costs on the market’s response to an exchange
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rate shock or other market shocks nonlinearly. The existence of different levels of

transaction costs can influence how price differentials respond to exchange rates or

other shocks, as it determines the presence or absence of arbitrage opportunities.

Indeed, a limitation of most existing threshold models of spatial price linkages lies in

the typical assumption that transactions costs are constant (in levels or proportional

terms). We allow transactions costs, which are inherently unobservable, to vary

according to many conceptually relevant economic variables. The proposed model

recognizes that the movements in the exchange rate can adjust how markets respond

to changes, leading to different regimes based on transaction costs. By considering

the effects of transaction costs, we can gain a more comprehensive understanding of

the dynamics of the exchange rate pass-through mechanism and the effect of market

factors.

The lag coefficients γs for s = 1, · · ·L represent the lag distribution and define the

pattern of how ∆πt−s or ∆zt−s affects ∆(p1t − p2t )over time. The dynamic marginal

effect of ∆πt at the s-th lag is
∂∆(pjt−pkt )

∂∆πt−s
= γ1s. The dynamic marginal effect of ∆πjk

t−s

on ∆(pjt − pkt ) at the s-th lag is given by
∂∆(pjt−pkt )

∂∆πjk
t−s

= γ1s. The dynamic marginal effect

is essentially an effect of a temporary change in ∆πjk
t−s on ∆(pjt − pkt ), whereas the

long-run cumulative effect
∑L

s=1 γ1s measures how much ∆(pjt−pkt ) will be changed in

response to a permanent change in ∆π when both∆πt and ∆(pjt − pkt ) are stationary.

The same derivation can be applied to any element of the vector ∆zjkt−s. In the context

of the threshold regression model considered here, γ1s and γ2s represent the effect

regardless of the status of the forcing variable Qt, termed the structural effect. On

the other hand, δjk1s and δjk2s represent the effect when Qt > c, referred to as the

threshold effect.

Although a range of economic variables may be conceptually relevant to price

linkages, the exact choice of variables and the resulting model specification is unclear.

Transactions costs, local policies, and other economic phenomena may affect price

linkages between international markets as well as between import and internal mar-

kets. Thus, we utilize data-driven methods to select an optimal specification from

among a set of potentially relevant variables.

To obtain a specification that incorporates a broad range of variables in (2.5), we

utilize a novel approach to inference and model selection: the debiasedLASSO (least

absolute shrinkage and selection operator) method for high-dimensional threshold
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regression, which was recently developed by Yan (2023). This method allows us to

fit the threshold regression models using the threshold LASSO estimator of Lee et al.

(2016) in conjunction with the work of van de Geer et al. (2014). Compared to other

estimators, this approach can construct asymptotically valid confidence bands for a

low-dimensional subset of a high-dimensional parameter vector. Understanding the

significance of the estimators can provide insights into the changes in transaction

costs and threshold effects over time. However, standard approaches to inference are

not applicable to such models.

To simplify, let

α = (γ1, γ20 · · · , γ2L, γ30 · · · , γ3L, δ1, δ20 · · · , δ2L, δ30 · · · , δ3L)′

be slope parameter vector, The dimension of α is 2 + 2(1 + p)(L + 1), where p is

number of other exogenous shocks. Let X be a T × [2 + (1 + p)(L+ 1)] matrix of all

regressors. To provide a more precise description of our estimation procedures, we

propose a three-step estimation approach for the model. The three-step procedure

can be outlined as follows:

Step 1.

For each c ∈ C, α̂(c) is defined as

α̂(c) := argminα

{
T−1

T∑
t=1

(
∆(pjt − pkt )− [X ′

t, X
′
t1{Qt ≥ c})]′α

)2
+ λ ∥D(c)α∥1

}
,

(2.6)

where we can rewrite the ℓ1 penalty as

λ ∥D(c)α∥1 = λ
∑

j = 12+(1+p)(L+1)
[∥∥X(j)

∥∥
n

∣∣α(j)
∣∣+ ∥∥X(j)(τ)

∥∥
n

∣∣α(1+(1+p)(L+1)+j)
∣∣] ,

to adjust the penalty differently for each coefficient, depending on the scale nor-

malizing factor. The tuning parameter λ can be selected using either the Akaike In-

formation Criterion (AIC) or the Schwarz Information Criterion (SBC). As the AIC

tends to produce less sparse solutions overall, and the SBC applies a stronger penalty

on the degrees of freedom, it is more conservative in variable selection compared to
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AIC. Therefore, we use AIC for tuning the parameter λ.

Define ĉ as the estimate of c0 such that:

ĉ := argminc∈C⊂R

{
T−1

T∑
t=1

(
∆(p1t − p2t )− [X ′

t, X
′
t1{Qt ≥ c})]′α̂(c)

)2
+ λ ∥α̂(c)∥1

}
.

(2.7)

Following Yan (2023), we next turn to variable selection utilizing thresholding.

We follow sharp threshold detection techniques provided by Callot et al. (2017) to

finding out whether there is a threshold or not, that is, whether

(δ1, δ20 · · · , δ2L, δ30 · · · , δ3L)′

is nonzero or not.

Step 2. We define the thresholded LASSO estimator as

δ̃(j)(ĉ) =

{
δ̂(j)(ĉ), if |δ̂(j)(ĉ)| ≥ H,

0, if |δ̂(j)(ĉ)| < H.
(2.8)

where H is the threshold determining whether a coefficient should be classified as

zero or nonzero and δ̂(j)(ĉ) are elements of the LASSO estimator defined by (2.6) and

(2.7) jointly. In particular, we shall see that choosing H = 2Dλ yields consistent

model selection. The thresholding parameter D can be selected using AIC or SBC

through grid search. This ensures that parameters smaller (in absolute value) than

D̂λ̂ are set to zero by the thresholded LASSO.

The thresholded LASSO in (2.8) can achieve threshold selection consistency. The

consistency of the thresholded LASSO estimator implies that if the underlying true

model is nonlinear, then the thresholded LASSO estimator will correctly estimate any

of the non-zero parameters, including (δ1, δ20, · · · , δ2L, δ30, · · · , δ3L), indicating the

presence of a nonlinear relationship between the variables. This is in contrast to the

conventional ‘self-exciting’ threshold autoregressive (SETAR) model, where nonlinear

tests such as Hansen’s modification of standard Chow-type tests, Tsay (1989) linearity

test, or neural network tests of linearity are utilized to detect nonlinearity. Therefore,

if we misspecify a linear model and use the LASSO method for the threshold model
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described here, we may estimate all threshold effects as zero for a sufficiently large

sample size. To put it another way, if our estimates of (δ1, δ20, · · · , δ2L, δ30, · · · , δ3L)
after steps 1 and 2 have at least one non-zero, it indicates that the probability of the

model being linear approaches 0. Performing least squares after a sharp threshold

detection technique yields inference that is asymptotically equivalent to inference

based on least squares with only the relevant variables. However, such inference is of

a pointwise nature.

The bias introduced by shrinkage through penalization in the LASSO loss func-

tion poses a barrier to developing the limiting distribution of the LASSO estimator.

Therefore, to enable statistical inference, an estimation strategy must be employed

to eliminate this bias. However, when modeling threshold regression with a rich set

of variables, a challenge emerges. Threshold models entail splitting the sample based

on a continuously-distributed variable. With a rich set of regressors, there’s a risk

that the number of observations in any split sample may be less than the number of

variables, leading to a reduced-rank sample covariance matrix. Standard approaches

are inadequate in such a situation. To debias (desparsify) our LASSO estimator, an

approximate inverse of a certain singular sample covariance matrix is needed, as dis-

cussed by van de Geer et al. (2014). For a more in-depth exploration and extensions

in the case of the LASSO applied to the high-dimensional threshold regression model,

detailed information can be found in Yan (2023). However, we do not delve further

into these extensions here.

Step 3

Finally, we can obtain debiased LASSO estimates for the threshold model, which is

given by:

â(ĉ) = α̂(ĉ) + Θ̂(ĉ)X ′(ĉ)(∆(pj − pk)−X(ĉ)α̂(ĉ))/n, (2.9)

where

Θ̂(ĉ) =

[
B̂(ĉ) −B̂(ĉ)

−B̂(ĉ) Â(ĉ) + B̂(ĉ)

]
, (2.10)

and B̂(ĉ) and Â(ĉ) are the inverse or approximate (if the sample covariance matrix

is singular) inverse of the split sample covariance matrices.

13



3 Empirical Application

The empirical analyses in our study focus on international corn markets, specifi-

cally three major exporting markets: the US, Argentina, and Ukraine. Despite its

widespread consumption and spatial dispersion, corn production is typically concen-

trated in specific regions. These three markets collectively accounted for 66.5% of

the world corn trade by volume in the 2021/2022 marketing year. Given the intri-

cate spatial dynamics of the corn market, analyzing spatial linkages is crucial for

an understanding of the underlying market dynamics and overall performance and

behavior.

We collected monthly maize prices and other relevant data from multiple sources

which are discussed below. As noted above, the main dependent variable of interest

in this study is the maize price in international markets. We collected the yellow corn

export prices of the US, Ukraine, and Argentina. Price data for the main three export

markets were obtained from the FAO Food Price Monitoring and Analysis (FPMA)

Tool, reporting prices in US dollars per metric ton.

Our dataset spans from April 2002 to December 2022, providing 243 monthly

observations for each series. However, due to data availability constraints, market

factors data for Ukraine is only accessible from April 2002 to February 2022, com-

prising 239 observations. Similarly, market factors data for Argentina is available

from July 2003 to December 2022, encompassing 234 observations. To address miss-

ing values, we applied spline interpolation during the relevant periods where prices

were missing.2

We collected exchange rates for Ukraine (United States dollar(USD) to Ukrainian

Hryvnia(UAH)) and Argentina (USD to Argentine peso(ARS)). Additionally, we col-

lected the Baltic Exchange Dry Index, measuring the cost of shipping dry goods like

maize worldwide. To capture US market factors, we sourced data from the Federal

Reserve Economic Data (FRED), including unemployment rates, the consumer price

index, the industrial production index, interest rates, and gasoline prices. For US

corn stocks data, we utilized quarterly information from the US Feed Grains Year-

book, converting it into monthly data for analysis3 Market factors for Ukraine, such as

2Cubic spline interpolation was employed to proxy missing price data within continuous periods.
20 observations are missing from April 2002 to February 2022 for the Ukrainian Maize export price.

3To align the data frequencies for our econometric analysis, cubic spline interpolation was applied
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unemployment rates, the consumer price index, and the industrial production index,

along with those for Argentina, such as unemployment rates, consumer price index,

and inflation rate, were sourced from the National Summary Data Pages (NSDPs)4

The basic unit of analysis used throughout is the natural logarithm of the price

ratio, denoted as pjt − pkt (= ln(P j
t /P

k
t )), where i and j indicate locations (i.e., j, k =

1, 2, 3 denote the US, Ukraine, and Argentina respectively), and t is a time index

such that t = 1, · · · , T . The international price data are shown in logarithmic form

in Figure 1b.

Figure 2 presents a graphical representation of logarithmic pairs of prices plotted

against each other, offering insights into the relationship between price levels and

price differentials. Deviations from the 45-degree line in each plot reveal distinct

basis patterns, where one price tends to be higher or lower than the other. These

patterns likely reveal the influence of transaction costs associated with regionally

distinct market trades. While these countries are exporters only, in the market inte-

gration framework, maize flows between the three markets can occur in any direction,

depending on potentially profitable arbitrage opportunities. Our observations from

the figures indicate that situations where the price of Ukrainian maize surpasses the

prices of US maize and Argentina maize occur more frequently.

To examine the characteristics of time series prices and identify the most appropri-

ate model for evaluating spatial price linkages, we conducted augmented Dickey-Fuller

tests for each pair of price differentials. The results of the Augmented Dickey-Fuller

(ADF) tests for the stationarity of the price differentials are presented in Table 6 in

to convert the quarterly US corn beginning stock data into the same frequency as all other monthly
variables. US corn beginning stock data is from 2001 Q2 (Dec-Feb) to 2021 Q3 (Mar-May), totaling
82 observations and converted to 246 monthly data. The seasonality of corn stocks was respected
in our interpolation methodology.

4To align the data frequencies for our econometric analysis, cubic spline interpolation was applied
to convert the quarterly Argentina unemployment rate and Ukraine employment rate into the same
frequency as all other monthly variables. The data for Ukraine unemployment ranges from 2022
Q1 to 2021 Q4 (standard calendar quarters), totaling 80 observations and converted to 240-month
observations. The data for Argentinian unemployment spans from 2002 Q4 to 2022 Q4, comprising
81 observations and converted to 243-month observations. Given that the variables, including the
consumer price index of Ukraine, industrial production index of Ukraine, and industrial production
index of Argentina, are segmented into multiple partitions over the selected period, and each partition
is calculated using different units in the data sources, we employ cubic spline interpolation to estimate
the data for the months where unit changes occur. Note that these variables are typically not volatile
on a month-to-month basis, making spline interpolation a reasonable approach to converting the data
to a monthly basis.
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the appendix, which indicates that the null hypothesis of nonstationarity of the price

differentials is strongly rejected in every case. This is as expected since a nonstation-

ary differential would imply that prices can drift arbitrarily far apart.

Transmission elasticities(
∂P j

t

∂Pk
t
) close to one provide support for market integration,

with 1.0 corresponding to perfect market integration. Additionally, we performed

ADF tests on the first differences of the logarithms of variables (all variables are

logarithmic except for the unemployment rates of three countries and the inflation rate

of Argentina), exchange rates, and other exogenous shocks. The results, presented

in Table 7 in the appendix, indicate that all these variables significantly differ from

nonstationary series. Our Augmented Dickey-Fuller (ADF) test on the first differences

of all variables strongly rejects the null hypothesis of nonstationarity. Therefore, we

can confidently implement Equation (2.5) for estimating the model with the available

data.

Before consideration of two-regime switching models, we consider a suite of tests

intended to detect departures from linearity in conventional time-series models. A

range of (non-) linearity tests were conducted for the price data. We applied a

standard Self-Exciting Threshold AutoRegressive (SETAR) model, as formulated by

Goodwin and Piggott (2001), to prices in spatially distinct markets for each of the

market pairs. The specification is given by:

∆(pjt − pkt ) =γ1(p
j
t−1 − pkt−1) + 1{|pjt−1 − pkt−1| ≥ c}

[
δ1(p

j
t−1 − pkt−1)

]
+ εt (3.1)

where c is a threshold parameter, and γ1+ δ1 is the parameter for trade regime. Each

of the linearity tests was applied to the collection of prices. Tests on pairs of prices

were conducted on the differential between logarithmic prices. Nonlinearity testing

results are contained in Table 1.5 The tests for all international market pairs reject

linearity in at least one of the alternative linearity tests at a 10% significance level.

Thus, these tests robustly reject linearity among the price linkages, prompting the

exploration of alternative, flexible specifications capable of accommodating nonlin-

earities. Threshold models are a likely candidate for a nonlinear representation of the

price relationships.

5Hansen’s modification of standard Chow-type tests of the bootstrapping results presented in
this paper utilized 1000 replications.
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The question remains as to the most appropriate specification of the alternative

models of price parity. We have suggested that, despite the fact that prices are all

quoted in US dollar terms, exchange rates may nevertheless play a role in international

price linkages. Specifically, if import prices pertain to an intermediary step in trade

between internal markets, where different currencies may exist, and international

markets, exchange rates may still be relevant to the price linkages. If exchange rates

are found to exert a statistically significant effect on price linkages, exchange rate

over- or under-shooting may exist. Further, it is unclear as to whether additional

variables may be relevant to price linkages. Markets are separated by unobservable

transactions costs, which may in turn be influenced by other economic variables.

Hence, we utilize LASSO methods to select an optimal specification.

We estimate four versions of price transmission models which are successively

more detailed. The first is a simple linear autoregressive model of prices alone. The

second model introduces exchange rates into the models. A third model allows for

nonlinear relationships through application of a threshold autoregressive model. Fi-

nally, we estimate a fourth model that includes other covariates, as selected by the

debiased LASSO methods described above. These additional covariates are intended

to capture other residual reasons why simple price linkages depart from equilibrium

parity conditions.

We initially estimate price relationships for the three pairs of market prices using

a standard autoregressive model of the form:

∆(pjt − pkt ) = γ1(p
j
t−1 − pkt−1), (3.2)

where (j, k) = {(1, 2), (1, 3), (2, 3)}, with the indices representing the US, Ukraine,

and Argentina as 1, 2, 3 respectively. γ0 and γ1 are parameters reflecting the degree of

market integration. In particular, we expect a small but negative value of γ1, so the

price differential pjt − pkt converges to 0 at the rate of 1 + γ1 < 1. A value of γ1 closer

to zero implies a slower adjustment to shocks. This model has been used extensively

to evaluate price transmission and parity conditions.

Moreover, we then extend our analysis to include the exchange rate, considering
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the following specification:

∆(p1t − p2t ) = γ1(p
1
t−1 − p2t−1) + γ2∆π12

t , (3.3)

where π12
t is the exchange rate between countries one and two. If γ2,0 is significantly

different from zero, imperfect exchange rate pass-through is implied. It may seem

odd to evaluate exchange rate effects when prices are quoted in a single currency, but

price distortions caused by exchange rate shocks are possible, even in such cases.

Besides model (3.2) and (3.3), estimations are conducted based on model (3.1).

In addition, we use exchange rates as covariates and estimate threshold models of the

form:

∆(pjt − pkt ) =γ1(p
j
t−1 − pkt−1) + γ2∆πjk

t

+1{|pjt−1 − pkt−1| ≥ c}
[
δ1(p

j
t−1 − pkt−1) + δ2∆πjk

t

]
+ εt.

(3.4)

The 1nd to 4th columns in Table 2 present estimates of two standard autoregressive

price parity models, as denoted by equations (3.2) and (3.3), and estimates of two

threshold autoregressive price parity models, referenced by equations (3.1) and (3.4).

The 2nd to 5th columns in Table 3 and Table 4 denote the same models for the

other two pairs of market prices. When threshold behavior is neglected in the linear

model, in every case, models incorporating exchange rates suggest adjustments in

response to deviations from equilibrium that are at least as fast as the models when

exchange rates are ignored. However, when considering the threshold models, the

estimations for the “no-trade” regime are positive but close to zero in every case

except for US/Ukraine with the exchange rate. This is consistent with expectations

since, in our conceptual framework, markets are not linked in the no-trade regime.

The theoretical expectation is for these estimates to be negatively approaching

zero. Nevertheless, except for the model of Argentina/Ukraine with the exchange rate,

we obtain negative estimates for δ1, indicating much faster adjustments in response

to deviations from equilibrium in the “trade” regime than the “no-trade” regime.

This is implied if the estimates of structural effects γ1 are negative. It’s interesting

to note that when considering the exchange rate effect in the models, the exchange

rates exhibit undershooting in all cases except for the trade regimes of US/Argentina

and Argentina/Ukraine.
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As mentioned earlier, our estimation procedures for threshold regression offer the

advantage of variable selection and threshold detection, eliminating the need for con-

ventional nonlinear tests commonly used in threshold models. In our study, the co-

variates included in all market pairs are the exchange rate, the Baltic Exchange Dry

Index, unemployment rates, and industrial production indexes for each market. Ad-

ditionally, for pairs including the US, we utilize US interest rates, US Corn Stock, and

US gas prices as control variables. Due to data availability, consumer price indexes

are collected for the US and Ukraine, while inflation rates are used for Argentina.

In this context, the symmetric lagged price differential |pjt−1 − pkt−1| transforms

into Qt, representing the quantile of |pjt−1− pkt−1| in selected samples. The estimation

of thresholds is conducted using a grid search. An assumption is made that all

|pjt−1 − pkt−1| values are distinct. This is a convenient condition, ensuring that the

transformation into quantiles is a one-to-one function without any loss of generality.

This assumption holds under the assumption of continuous distribution for |pjt−1 −
pkt−1|.

The threshold estimates offer insights into transaction costs. Simultaneously, the

quantile estimates (refer to the same tables) illuminate whether, during the selected

periods, monthly observations more frequently align with trade regimes characterized

by lower quantile estimates. In the scenarios of US/Ukraine and Argentina/Ukraine,

price differentials within the bands occur more frequently, as quantile estimates of

the threshold parameters exceed 0.5. However, for US/Argentina, arbitrage activities

are triggered more frequently, leading to the “trade” regime. When examining the

magnitude of the price differential estimates, the width of the band representing “no

trade”, as implied by the thresholds, is widest for the Argentina/Ukraine markets

and narrowest for the US/Argentina markets.

To make it comparable with our baseline model (the linear model that includes

only the error correction term) in the first column, we set the first element in the

scaling diagonal matrix D(c) in (2.6) to 0. This ensures that the LASSO estimation

will always select the parameter γ1. The last (5th) column in each of the tables (Table

2, Table 3, and Table 4) presents estimates of the threshold model using debiased

LASSO, as based on equation (2.5). In all three cases, the estimates of adjustment in

response to deviations from equilibrium (γ1) are negative and close to zero, indicating

a significant convergence to market equilibrium. The nonlinear impact of the degree
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of error correction manifests exclusively in the Argentina/Ukraine scenario, although

the estimates are statistically insignificant. In contrast, in the other two cases, both

nonlinear error correction and exchange rate terms are not selected.

Tables 5 display the signs of statistically significant estimates of market factors at

the 10% significance level, excluding the error correction rate estimates (γ1 and δ1) and

exchange rate effect estimates (γ2,0 and δ2,0), which correspond to models represented

by the last column in each table (Table 2, Table 3, and Table 4). It is important to

note that debiased LASSO estimates are considered statistically insignificant when

the slope estimates by equation (2.5) are zero. Thus, only non-zero estimates by

equation (2.5) are presented. In the case of US/Ukraine, we observed that the Baltic

Freight Index is not selected in the “no-trade” regime but is selected in the “trade”

regime, suggesting that the Baltic Freight Index exerts a nonlinear effect, particularly

in periods characterized by trade activity. In the case of Argentina and Ukraine,

the 4th lag of Ukraine’s CPI and the 4th lag of Ukraine’s Industrial Production

Index are selected only in the “trade” regime, indicating that these two variables

produce a nonlinear effect, especially when trade opportunities exist. Furthermore,

the Baltic Freight Index is selected in both the “no-trade” and “trade” regimes, but its

magnitude in the “trade” regime is larger than in the “n0-trade” regime, indicating

a more pronounced effect when trade opportunities are present. However, there is

insufficient evidence to suggest similar patterns for the US/Argentina pair.

Combining the findings from Tables 2, 3, 4, and 5, we can conclude that threshold

effects are present in the US/Ukraine and Argentina/Ukraine cases. These results

suggest that the market pairs of US/Ukraine and Argentina/Ukraine exhibit signifi-

cant nonlinear adjustments influenced by specific market factors. However, no non-

linear effects are observed in the case of US/Argentina. This observation is consistent

with the nonlinear tests presented in Table 1, nonlinearity is rarely and randomly

significant in certain tests.

The standard threshold model assumes a fixed threshold, a potentially limiting

assumption. It is reasonable to consider that relationships may evolve, signaling

structural changes in the underlying economic dynamics. To explore this possibility,

we introduce partitions that reflect changes in market environments. The data is seg-

mented into two periods corresponding to two significant economic shocks: the 2014

Crimean crisis (e.g., Korovkin and Makarin (2023)) and the global financial/economic
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crisis of 2008-09 (e.g., Liefert et al. (2021)). Specifically, the breakpoints for these

events are defined as February 2014 and October 2008, respectively, in our monthly

dataset. Introducing a break in the dataset corresponding to October 2008 for the

global financial/economic crisis and February 2014 for the 2014 Crimean crisis reveals

that, in most cases, the selected optimal lagged forcing variables differ across the en-

tire period, pre-breakpoint, and post-breakpoint. Profitable arbitrage opportunities

are more frequent only in the post-February 2014 period for the US/Ukraine markets,

while in every other case, such opportunities are fewer. When examining the mag-

nitude of the price differential estimates, post-break threshold bands are narrower

in all comparisons except for US/Argentina pre/post-October 2008. Subsequently,

we remove the shrinkage bias introduced by the penalization in Equation (2.6) using

Equation (2.9) for post-selection statistical inference. Our estimation setup considers

a richer examination of price linkage among global maize markets. The fundamental

framework of the threshold model illustrates that if any of the estimates of the slope

coefficients (exchange rate pass-through or exogenous shock ) are regime-specific,

the effects of certain lagged exchange rate or exogenous shock on price differentials

(which could be lagged variables) between two distinct markets differs depending

on the magnitude of a certain forcing variable representing unobserved transaction

costs. Estimates of non-zero differences between the two regimes imply nonlinear

relationships. The slope coefficient directly corresponds to elasticity, measuring the

responsiveness of the dependent variable (the price linkages in time t) to changes in

the explanatory factors (lagged exchange rate between the two markets or any mar-

ket factor). A straightforward way to illustrate the effects of exchange rates, market

factors, or exogenous shocks on potential deviations from price parity is by analyz-

ing the coefficient estimates obtained from our estimations. All lagged variables are

allowed to have a dynamic linear effect or a dynamic nonlinear effect depending on

the existence of a regime switch (threshold).

Tables 8, 9, and 10 offer a comprehensive summary of the estimates for the degree

of error correction and exchange rate effects based on (2.5) using the LASSO method6

These tables offer valuable insights into the adjustments and effects in each market

6If γ1, γ2,0, δ1, or δ2,0 is not selected by the LASSO step, their estimates and standard errors are
left blank in the table. The detailed debiased LASSO estimates for all variables are not included
here due to space constraints but are presented in the Appendix.
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pair, illuminating the interdependence between different markets. In almost every

case, spanning entire periods and structural breaks, the estimates of the degree of

“error correction” adjustments approach negative zero, except for the Post-October

2008 period in the US/Ukraine markets. The threshold models suggest adjustments

in response to deviations from equilibrium in the “trade” regime that are at least

as fast as those in the “no-trade” regime, except for the Post-October 2008 and

Post-February 2014 periods in the US/Ukraine markets, and the Post-October 2008

period in the US/Argentina market, as well as the Pre-February 2014 period in the Ar-

gentina/Ukraine market. The threshold models indicate that exchange rates exhibit

perfect pass-through to markets during the Post-October 2008, Pre-February 2014,

and throughout the entire period in the US/Argentina pair across all 11 models.

In every case, some other market factors and their past period values are selected

and tested as statistically significant.

4 Summary and Concluding Remarks

We develop a model of price parity in spatially distinct international export mar-

kets for maize to investigate the degree of “error correction”, the exchange rate pass-

through, and other market factor effects. The models are developed within the frame-

work of high-dimensional threshold models. We consider such nonlinear models, that

has developed an increasingly rich set of factors in models of spatial market integra-

tion, as extensions to existing literature. The debiased LASSO estimation procedures

are used to specify the models.

In summary, our findings consistently indicate faster adjustments in response to

deviations from equilibrium in conditions of profitable trade and arbitrage compared

to the case of no trade. The markets exhibit strong linkages in most cases, with

confirmed nonlinear adjustments. Aligned with existing research, there is insufficient

evidence to reject perfect pass-through of exchange rate fluctuations. However, the

process of price convergence to market equilibrium is influenced by changes in some

market factors, such as transportation cost, market unemployment rate, inflation,

and the index of industrial production. These differences signify more substantial

disequilibrium conditions, thereby presenting larger arbitrage opportunities.
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Nonlinearity test

US/ Ukraine US/Argentina
Test Statistics p-value Test Statistics p-value

Teraesvirta’s neural network test χ2 2.596 0.273 2.541 0.281
White neural network test χ2 2.898 0.235 6.587 0.037

Keenan’s one-degree test for nonlinearity F-test 1.639 0.202 0.115 0.735
Tsay’s Test for nonlinearity F-test 1.360 0.099 1.125 0.340

Likelihood ratio test for threshold nonlinearity χ2 22.777 0.077 10.476 0.132
(SETAR) models: Linear AR versus 1 threshold TAR F-test 5.882 0.515 8.795 0.202

Argentina/Ukraine
Test Statistics p-value

Teraesvirta’s neural network test χ2 3.005 0.223
White neural network test χ2 3.529 0.171

Keenan’s one-degree test for nonlinearity F-test 2.181 0.141
Tsay’s Test for nonlinearity F-test 2.166 0.048

Likelihood ratio test for threshold nonlinearity χ2 10.573 0.207
(SETAR) models: Linear AR versus 1 threshold TAR F-test 6.216 0.479

Table 1: Nonlinearity Specification Testing Results
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Parameter Linear without Linear with Threshold without Threshold with Threshold using
exchange rate exchange rate exchange rate exchange rate debiased LASSO

degree of “error correction” γ1 −0.114 ∗∗∗ −0.114 ∗∗∗ 0.061 0.071 −0.074∗∗

(0.030) (0.029) (0.069) (0.069) (0.031)
exchange rate effect γ2,0 0.193∗ 0.188 ∗ 0.114

(0.100) (0.107) (0.084)
degree of “error correction” δ1 −0.214∗∗ −0.228∗∗

(0.076) (0.076)
exchange rate effect δ2,0 0.188

(0.273)

threshold estimate 0.130 0.130 0.124
threshold quantile 0.73 0.73 0.71

Observations 233 233 233 233 233
R2 0.060 0.075 0.091 0.112 · · ·
Adjusted R2 0.056 0.067 0.084 0.097 · · ·
F-statistic 14.92 9.42 11.63 7.24 · · ·
AIC −5.480 −5.487 −5.505 −5.511 −5.552

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Model Estimates: US/ Ukraine
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Parameter Linear without Linear with Threshold without Threshold with Threshold using
exchange rate exchange rate exchange rate exchange rate debiased LASSO

degree of “error correction” γ1 −0.134 ∗∗∗ −0.134 ∗∗∗ 0.264 0.263 −0.177∗∗∗

(0.033) (0.033) (0.219) (0.220) (0.030)
exchange rate effect γ2,0 0.016 0.072

(0.062) (0.116)
degree of “error correction” δ1 −0.406∗ −0.406∗

(0.221) (0.222)
exchange rate effect δ2,0 −0.079

(0.138)

threshold estimate 0.033 0.033 0.069
threshold quantile 0.36 0.36 0.65

Observations 228 228 228 228 228
R2 0.067 0.067 0.081 0.082 · · ·
Adjusted R2 0.063 0.059 0.073 0.066 · · ·
F-statistic 16.31 8.15 9.92 5.03 · · ·
AIC −6.600 −6.592 −6.606 −6.600 −6.651

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Model Estimates: US/ Argentina
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Parameter Linear without Linear with Threshold without Threshold with Threshold using
exchange rate exchange rate exchange rate exchange rate debiased LASSO

degree of “error correction” γ1 −0.116 ∗∗∗ −0.126 ∗∗∗ 0.126 0.095 −0.329∗∗

(0.031) (0.031) (0.175) (0.076) (0.156)
exchange rate effect γ2,0 0.193 ∗∗ 0.204∗∗ 0.181∗∗

(0.082) (0.092) (0.076)
degree of “error correction” δ1 −0.250 0.106 −0.117

(0.128) (0.142) (0.166)
exchange rate effect δ2,0 −0.285

(0.215)

threshold estimate 0.063 0.119 0.133
threshold quantile 0.51 0.72 0.77

Observations 218 218 218 218 218
R2 0.060 0.094 0.068 0.047 · · ·
Adjusted R2 0.055 0.085 0.060 0.029 · · ·
F-statistic 13.76 11.1 7.90 2.65 · · ·
AIC −5.462 −5.479 −5.462 −5.422 −5.716

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Model Estimates: Ukraine/ Argentina
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Model US/Ukraine US/Argentina Argentina/Ukraine

lag 6 USD UAH Exchange −
lag 5 Baltic Freigh − −

lag 1 US CPI −
trade Baltic Freigh − −
lag 4 US Corn Stock +

lag 5 Argentina Unemployment Rate −
Baltic Freigh −

Argentina Monthly Inflation +

Ukraine INDPRO +

lag 4 Peso UAH Exchange +

lag 1 Baltic Freigh −
lag 2 Baltic Freigh −
lag 3 Baltic Freigh −

lag 4 Argentina Monthly Inflation +

lag 5 Argentina Monthly Inflation −
lag 6 Argentina Monthly Inflation −

lag 4 Ukraine CPI −
lag 1 Ukraine INDPRO +

lag 6 Ukraine INDPRO −
trade lag 4 Ukraine CPI +

trade lag 4 Ukraine INDPRO −

Table 5: Signs of Market Control Variables Estimates at 10% significant Level

27



(a)

(b)

Figure 1: (a) Global Corn Exports by Country and Marketing Year, Source: U.S.
Department of Agriculture, Foreign Agricultural Service (2022). (b) Maize Retail
Price Series (in log terms) by Country
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Figure 2: Maize Market Prices Pairs (in logarithms)
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5 Appendix

Augmented Dickey-Fuller test Results

Variable ADF

Unit Root

ln US Ukraine diff −4.446

ln US Argentina diff −3.860

ln Ukraine Argentina diff −4.877

Alternative hypothesis: stationary Lag order = 6

significance level Critical value

1% −3.96

5% −3.41

10% −3.12

*The critical values are interpolated from Table 4.2 of Banerjee et al. (1993).

Table 6: Augmented Dickey-Fuller Test Results of Price Differentials
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Augmented Dickey-Fuller Test

Variable (1st diff) Dickey-Fuller

ln US Ukraine diff −5.403

ln US Argentina diff −8.379

ln Ukraine Argentina diff −6.283

ln USD UAH Exchange −5.207

ln USD Peso Exchange −5.222

ln Peso UAH Exchange −4.650

ln Baltic Freight −8.028

US Unemployment Rate −7.146

Ukraine Unemployment Rate −6.261

Argentina Unemployment Rate −5.148

ln US Industrial Production Index −5.794

ln Ukraine Industrial Production Index −6.467

ln Argentina Industrial Production Index −7.630

ln US Consumer price index −6.301

ln Ukraine Consumer price index −4.290

Argentina Monthly Inflation −6.374

US Interest Rate −3.055

ln US Monthly Gas Price −7.502

ln US Corn Stock −11.561

Alternative hypothesis: stationary Lag order = 6

significance level Critical value

1% −3.96

5% −3.41

10% −3.12

*The critical values are interpolated from Table 4.2 of Banerjee et al. (1993).

Table 7: Augmented Dickey-Fuller Test Results of First Difference of Time Series
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Parameter Entire Period Pre-October 2008 Post-October 2008 Pre-February 2014 Post-February 2014

degree of “error correction” γ1 −0.074∗∗ −0.090 ∗∗∗ −0.295∗∗∗ −0.258∗∗∗ −0.165∗∗∗

(0.031) (0.001) (0.000) (0.020) (0.001)

exchange rate effect γ2,0 0.114 1.604 0.794 ∗∗ 0.462 0.243∗∗∗

(0.084) (0.553) (0.326) (0.293) (0.011)

degree of “error correction” δ1 0.204 ∗∗∗

(0.003)

exchange rate effect δ2,0 0.492 ∗∗∗

(0.017)

other variables omitted · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

threshold estimate 0.124 0.099 0.068 0.097 0.062

threshold quantile 0.71 0.55 0.45 0.58 0.42

Observations 233 73 160 137 96

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Estimates of Threshold Model Using Debiased LASSO: US/ Ukraine
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Parameter Entire Period Pre-October 2008 Post-October 2008

degree of “error correction” γ1 −0.177∗∗∗ −0.340∗∗∗ 0.164

(0.030) (0.001) (0.251)

exchange rate effect γ2,0 −1.108∗∗∗ 0.050

(0.423) (0.061)

degree of “error correction” δ1 −0.085

(0.219)

exchange rate effect δ2,0 0.593∗∗∗ 0.479∗∗

(0.176) (0.212)

· · · · · · · · ·
· · · · · · · · ·

threshold estimate 0.069 0.062 0.046

threshold quantile 0.65 0.56 0.50

Observations 228 58 170

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 9: Estimates of Threshold Model Using Debiased LASSO: US/Argentina

35



Parameter Entire Period Pre-February 2014 Post-February 2014

degree of “error correction” γ1 -0.329 ∗∗ -0.144∗∗∗ -0.213∗∗∗

(0.156) (0.006) (0.011)

exchange rate effect γ2,0 0.181∗∗ 1.639 ∗∗∗ 0.159∗∗∗

(0.076) (0.087) (0.014)

degree of “error correction” δ1 -0.117 0.248∗∗∗

(0.166) (0.096)

exchange rate effect δ2,0 -3.026∗∗∗ 0.183∗∗∗

(0.873) (0.026)

· · · · · · · · ·
· · · · · · · · ·

threshold estimate 0.133 0.098 0.093

threshold quantile 0.77 0.58 0.70

optimal threshold time delay 3 4 4

Observations 218 122 96

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: Estimates of Threshold Model Using Debiased LASSO: Argentina/Ukraine
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