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Abstract
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1 Introduction

Efficient markets are expected to eliminate any opportunities for riskless profits through ar-

bitrage, a principle known as the ‘Law of One Price’ (LOP) (Samuelson (1964)). Economic

arbitrage is based on the expectation that prices of homogeneous goods should converge

over time, differing only by transportation and transaction costs in freely functioning mar-

kets. However, in reality, market frictions such as transaction costs, trade barriers, and

external shocks disrupt this process. The presence of transaction costs can create threshold

effects, where price deviations must exceed a certain threshold to trigger arbitrage and sub-

sequent price movement. Recent research has increasingly focused on nonlinear models

to better capture the influence of unobservable transaction costs on spatial price linkages.

These models, often grounded in threshold modeling techniques, highlight the possibility of

regime switching, where different price adjustment regimes represent trade and “no-trade”

equilibria.

The global maize market is one of the most important agricultural commodity markets,

playing a critical role in food security and international trade. Maize is not only a staple

food in many parts of the world but also a key input in industries such as livestock feed

and biofuel production. The United States, Argentina, and Ukraine are the top maize ex-

porters, accounting for a significant portion of global maize exports. Given the economic

and geopolitical importance of maize, understanding the dynamics of international maize

markets is crucial for policymakers, traders, and investors. Trade policies, market shocks,

and exchange rate fluctuations in these major exporting countries can have ripple effects

across the global economy, influencing maize prices and availability in importing nations,

particularly in developing economies that are dependent on imports for food security.

Several empirical studies have explored the integration of agricultural markets across
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different countries and regions. For example, Abdulai (2000) analyzed market integration

in Ghanaian maize markets, identifying nonlinear price adjustments driven by transaction

costs and market imperfections. Similarly, Baquedano and Liefert (2014) examined global

grain markets, demonstrating how major exporters like the United States, Argentina, and

Ukraine play pivotal roles in transmitting prices to other regions, particularly developing

economies. Fackler and Goodwin (2001) provided an empirical framework for studying

maize market integration, emphasizing the importance of price co-movements across ge-

ographically distinct markets, which can provide insight into the efficiency of the global

maize trade.

Exchange-rate pass-through, or the degree to which exchange rate movements are re-

flected in prices, has been a topic of interest in international economics, though its applica-

tion in global agricultural commodity markets is limited. For example, Chambers and Just

(1981) used an econometric model of the wheat, corn, and soybean markets to investigate

the dynamic effects of exchange rate fluctuations on U.S. commodity markets. The study

found that exchange rate fluctuations had a significant impact on export volumes and the

balance between exports and domestic use of these commodities. Similarly, Varangis and

Duncan (1993) examined the impact of exchange rate changes on steel prices, demonstrat-

ing that exchange rate fluctuations are not fully passed through to final prices due to other

influencing factors, such as production costs and industrial output. In international trade,

many commodities are priced in U.S. dollars. While this may suggest that exchange rates

are irrelevant to price linkages, local currency valuation after importation makes exchange

rates potentially relevant even when trade is invoiced in a common currency. We discuss

this point in greater detail below.

Barrett and Li (2002) emphasized that trade flows should be considered when assessing

market integration, particularly when distinguishing between spatial market integration and
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competitive market equilibrium. In addition to geographic and international factors, sev-

eral macroeconomic variables also play critical roles in influencing commodity prices. For

example, Frankel (2006) and Furlong and Ingenito (1996) found that rising inflation often

drives investors toward commodities as a hedge, leading to price increases. Moreover, Ab-

bott et al. (2011) and Baffes and Haniotis (2010) demonstrated that agricultural commodity

prices, such as those of maize and wheat, are significantly influenced by macroeconomic

variables like inflation and interest rates, which affect both production costs and global

demand. Additionally, Pindyck and Rotemberg (1990) and Sadorsky (1999) found that in-

dustrial output and unemployment rates also play crucial roles in determining commodity

prices, as they influence both the supply and demand sides of the market. Higher pro-

duction levels generally drive up demand for raw materials, while lower unemployment is

indicative of stronger economic activity, boosting consumption. Finally, inventory levels

are often viewed as a barometer for market tightness. Wright (2011) and Baumeister and

Kilian (2016) demonstrated that fluctuations in grain and oilseed inventories can signal im-

balances between supply and demand, thereby influencing price volatility and expectations

in commodity markets.

While previous studies have offered valuable insights into market integration and price

transmission, they often rely on traditional econometric models that face limitations when

dealing with the complexities of large datasets and numerous interacting variables. More

modern approaches have emerged to address these limitations, particularly those involving

nonlinear dynamics, such as regime switching and price asymmetries. The existence of dis-

tinct regimes—one representing profitable trade and the other indicating a lack of arbitrage

opportunities—has led to the application of nonlinear time-series models, such as thresh-

old autoregression (TAR) models. These models allow for more flexible representations

of market integration by capturing unobservable transaction costs and other frictions that
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influence price transmission (Goodwin et al. (1990), Goodwin and Piggott (2001), Lence

et al. (2018)). TAR models are particularly useful in identifying regime-switching behavior

in commodity markets, where price responses may vary based on the level of transaction

costs.

Recent advances in econometrics have shifted toward methods capable of accounting

for complex interactions among multiple variables. For example, Goodwin et al. (2021)

and Goodwin (2024) utilized generalized additive models to study price transmission in

plywood/lumber, and cannabis markets. These semiparametric models have demonstrated

their ability to capture nonlinearities in price transmission, further expanding the toolkit

available for studying market integration.

Building on the limitations of traditional econometric approaches, recent advances have

introduced methods capable of addressing the complexities of high-dimensional datasets.

One such method is LASSO (Least Absolute Shrinkage and Selection Operator), which

excels at variable selection and regularization in large datasets. LASSO simplifies models

by shrinking the coefficients of less relevant variables to zero, improving interpretability

without sacrificing performance. However, LASSO introduces shrinkage bias due to pe-

nalization, resulting in biased and inconsistent estimates. To overcome this issue, this study

applies the debiased LASSO method, originally proposed by van de Geer et al. (2014) and

extended to high-dimensional threshold models by Li and Yan (2024). This method cor-

rects for the bias while preserving the benefits of variable selection. Additionally, it high-

lights the advantage of LASSO in threshold models, as it allows for the detection of regime

switching in a data-driven manner, even if the regime switch is not explicitly present. This

approach, combined with high-dimensional threshold models, enables the capture of com-

plex, dynamic interactions in the international maize market, offering a deeper understand-

ing of price linkages across countries and time.

5



This study contributes to the literature by employing advanced econometric techniques,

including debiased LASSO for high-dimensional threshold models, to better understand

price linkages in the international maize market. These methods provide greater flexibility

and robustness in capturing the dynamic interactions among exchange rates, macroeco-

nomic variables, and commodity prices, offering a natural extension to existing research on

spatial market integration.

Organization: The rest of the paper is organized as follows. Section 2 discusses the

conceptual issues of spatial market integration and introduces the method proposed by Li

and Yan (2024), including its extension to high-dimensional models. Section 3 applies this

method to the case of international maize markets. Finally, Section 4 concludes the paper.

2 Econometrics Models of Spatial Market Integration

Spatial market integration in agricultural product markets has been extensively studied in

the literature. Consider a commodity traded in common currency in two regional or inter-

national markets represented by location indices j and k. The individual market prices are

denoted by P j and P k, respectively. The arbitrage condition of perfect market integration

reflects the equation P j
t /P

k
t = 1, abstracting from trade and transportation costs. This

condition has been adjusted to account for the wedge between prices due to transaction or

transportation costs, which may differ significantly in regional markets. The general rep-

resentation for this adjusted arbitrage condition is 1/(1 − κ) ≤ P j
t /P

k
t ≤ 1 − κ, where

κ represents the proportional loss in commodity value due to transaction or transportation

costs (0 < κ < 1). The greater the distance between locations j and k, the closer κ is to

one. It should be noted that many factors may be relevant to price differences across mar-

kets. Most existing studies have only considered simple price relationships. An important
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distinction exists between transportation and transactions costs, which include transport

costs as well as other factors that contribute to price differences. These factors could in-

clude variables associated with economic and trade policies, product characteristics, and

risk.

Many spatial economic models utilize the iceberg trade cost proposed by Samuelson

(1954), which assumes that part of the produced output representing the material costs of

transportation melts away during transportation. That is, after taking natural logarithms

and denoting pjt = lnP j
t , the inequality is often presented as

|pjt − pkt | ≤ | ln (1− κ)|. (1)

The inequality (1) is generally considered to reflect two distinct states of the market. The

first state corresponds to a condition where there is no profitable trading, with |p1t − p2t | ≤

| ln (1− κ)|. Under conditions of trade or profitable arbitrage opportunities, the condition

holds as |pjt − pkt | > | ln (1− κ)|. The speed at which the market adjusts to such deviations

from the arbitrage equilibrium is often used as a measure of the degree of market integra-

tion. Typically, these discrete arbitrage and no-arbitrage conditions are represented using

threshold models, where the threshold represents an empirical measure of the transaction

cost, | ln (1− κ)|. Bidirectional trade models may allow for different thresholds depending

on which market price is higher.

Over time, log price differentials within the band limits are expected to follow a unit

root process. Conversely, log price differences outside the band are expected to be mean-

reverting, which suggests the existence of a transactions cost band, as assumed in the liter-

ature.

A wide literature has examined spatial market integration in world markets for agri-
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cultural commodities. Likewise, a large related literature has examined how shocks to

exchange rates affect domestic and export prices, a phenomenon known as ‘pass-through’.

If a shock to exchange rates is fully reflected in adjustments to prices, the shock is consid-

ered to have been fully passed through. Most empirical studies of market integration and

exchange rate pass-through assume a linear relationship, as represented by

pjt = α + βpkt + γ2π
jk
t + εt, (2)

where pjt is the price in market j in time period t and πjk
t is the exchange rate between

currencies in markets j and k, all in logarithmic terms.

Perfect integration is implied when α = 0 and β = 1. In cases where prices are

invoiced in different currencies, perfect integration also requires perfect exchange rate pass-

through, which occurs when γ2 = 1. If prices are invoiced in a common currency, as

is often the case when trade is conducted in US dollars, the exchange rate is effectively

1, and thus the logarithmic value of zero eliminates the exchange rate effect. However,

exchange rate distortions may still influence price linkages, indicated by γ2 ̸= 0, even if

prices are quoted in a common currency. If γ2 > 0, it suggests that the price of a good in

market j has increased excessively in response to the exchange rate change, overshooting

the equilibrium level. Conversely, if γ2 < 0, it indicates that after an exchange rate change,

market j underreacts, which is referred to as undershooting the equilibrium.

It is also essential to consider other market factors associated with deviations from

perfect integration. To this end, we consider an alternative version of equation (2) that is

expressed as:

pjt − pkt = γ2π
jk
t +

L∑
l=1

γ ′
3lz

jk
t−l + εt, (3)

Here, L represents the maximum lag, and zjk
t−l is a set of factors that may be conceptually
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relevant to price linkages. The vector of parameters γ3 = [γ ′
31, · · · ,γ ′

3L]
′ is a vector of

parameters corresponding to [(zjk
t−1)

′, · · · , (zjk
t−L)

′]′. We assume that the maximal lag order

L is known. We consider that the exogenous shocks zjk
t−l can react contemporaneously to

the exchange rates πjk
t and therefore only enter the equation with lag structures. The lag

coefficients vector γ3l for l = {1, · · ·L} represent the lag distribution and define the pattern

of how zjk
t−laffects ∆(p1t − p2t )over time. The dynamic marginal effect of zjk

t−l at the l-th

lag is ∂∆(pjt−pkt )

∂zjk
t−l

= γ3l. The dynamic marginal effect is essentially an effect of a temporary

change in zjk
t−l on ∆(pjt − pkt ), whereas the long-run cumulative effect

∑L
l=1 γ3l measures

how much ∆(pjt − pkt ) will be changed in response to a permanent change in zjk. These

factors include exogenous shocks such as exchange rates, interest rates, unemployment

rates, and nominal inflation rates, which are relevant to price linkages and largely serve as

proxies for unobservable market factors.

A distributed lag model (Almon (1965)) is utilized to reveal both short- and long-run

dynamic effects between explanatory variables and response variables. In the model above,

while the ‘error correction’ process captures long-run relationships, exchange rate pass-

through reflects the market’s reaction to international markets. All exogenous shocks are

measured as percentage changes from the previous time period, which allows a focus on

immediate changes in the variables.

To further analyze spatial price linkages, we propose an extension to the conventional

framework of spatial market integration that includes two regimes. We use ‘error correc-

tion’ models to account for the regime switching implied by thresholds. This approach

evaluates deviations from a price parity condition, considering threshold effects of price

differentials, exchange rate pass-through, and isolated shocks in spatially distinct markets.

One regime represents a case of ‘no-trade’, while the other represents conditions of prof-

itable trade and arbitrage. The regime switch depends on a forcing variable, usually a
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lagged price differential. Besides, to assess the potential presence of transaction costs and

other factors affecting price relationships, we consider a threshold model with a multivari-

ate distributed lag structure and ‘error correction’ as follows:

∆(pjt − pkt ) =γ1(p
j
t−1 − pkt−1) + γ2π

jk
t +

L∑
l=1

γ ′
3lz

jk
t−l

+ 1{Qt−1 > c}

[
δ1(p

j
t−1 − pkt−1) + δ2π

jk
t−l +

L∑
l=1

δ′
3lz

jk
t−l

]
+ εt

(4)

In the model, L represents the maximum possible lag, which may increase with the sample

size and potentially grow slowly to infinity. The forcing variable Qt−1 = |pjt−1− pkt−1| trig-

gers the regime switch. The parameters γ1 and δ1 reflect the degree of market integration.

In particular, γ1 and δ1 represent the degree of ‘error correction’ characterizing departures

from price parity, which are reflected in large values of pjt−1 − pkt−1. The threshold param-

eter c represents the amount of proportional transaction costs that a price differential must

exceed to cross the threshold and trigger the ‘trade’ regime adjustments. We allow δ1,δ2

and δ3 to nonzero according to whether |pjt−1 − pkt−1| is within (i.e., |pjt−1 − pkt−1| ≤ c )

or outside (i.e., |pjt−1 − pkt−1| > c ) of a symmetric band. In the context of the threshold

regression model considered here, γ1 ,γ2 and γ3 represent the effect regardless of the status

of the forcing variable |pjt−1 − pkt−1|, termed the structural effect. On the other hand, δ1 ,δ2

and δ3 represent the effect when |pjt−1 − pkt−1| > c, referred to as the threshold effect.

Economic agents adjust their expectations of price differentials based on the level of

transaction costs that pertain to previous periods. If the price differential exceeds cer-

tain thresholds, agents anticipate profitable gains from arbitrage and trade. The specified

model offers the advantage of capturing simultaneous relationships between exchange rates

and other relevant variables. Linear modeling techniques may not accurately capture the
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nonlinearities present in the model. Therefore, it is essential to investigate the impact of

transaction costs on the market’s response to an exchange rate shock or other market shocks

nonlinearly. The existence of different levels of transaction costs can influence how price

differentials respond to exchange rates or other shocks, as it determines the presence or ab-

sence of arbitrage opportunities. Indeed, a limitation of most existing threshold models of

spatial price linkages lies in the typical assumption that transactions costs are constant (in

levels or proportional terms). We allow transactions costs, which are inherently unobserv-

able, to vary according to many conceptually relevant economic variables. The proposed

model recognizes that the movements in the exchange rate can adjust how markets respond

to changes, leading to different regimes based on transaction costs. By considering the

effects of transaction costs, we can gain a more comprehensive understanding of the dy-

namics of the exchange rate pass-through mechanism and the effect of market factors.

For this model, there are several reasons for model selection. Firstly, although theory

suggests nonlinear relationships among prices, conventional threshold models often require

specific nonlinear tests with estimation. This is a key consideration in the model selection

issue for our model (4).

Secondly, while a range of economic variables may be conceptually relevant to price

linkages, there is uncertainty about which factors are directly related to price relationships,

such as local policies, product heterogeneity, and unobservable transaction costs. The ex-

act choice of variables and the resulting model specification are not clear. Transaction

costs, local policies, and other economic phenomena can influence price linkages between

international markets as well as between import and domestic markets.

Thirdly, when dealing with time-lagged relationships, selecting the appropriate lag

length is crucial in time series modeling. Typically, a well-defined lag length is chosen,

and all lags up to that period are included in the model. However, in our context, where
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we examine the dynamic relationship between price linkages, exchange rates, and market

factors in agricultural commodities, the delivery time between markets spans several weeks

to months. Consequently, not all lags are equally important for capturing price linkages in

response to market shocks.

In such scenarios, the presence of two regimes, a comprehensive set of control vari-

ables, and the maximum possible lag, which may potentially grow to infinity, causes the

model high-dimensional. Therefore, threshold detection, along with variable selection and

lag selection in a distributed lag model, facilitated by LASSO—a shrinkage method—is

particularly effective. Shrinkage methods assume a certain structure on the parameter vec-

tor. Typically, sparsity is assumed, where only a small, unknown subset of the variables

is thought to have ‘significantly non-zero’ coefficients, and all the other variables have

negligible – or even exactly zero – coefficients. LASSO estimation allows for a more pre-

cise representation of dynamic relationships in agricultural commodity markets, offering a

richer evaluation of price dynamics and patterns of adjustment.

Although LASSO models have been widely used in economics studies, the shrinkage

bias introduced due to the penalization in the LASSO loss function can affect the properly

limiting distribution of the LASSO estimator. Therefore, to conduct valid statistical infer-

ence, we need to remove this bias. To obtain valid statistical inferences for model (4), we

employ the debiased LASSO method for high-dimensional threshold regression, recently

developed by Li and Yan (2024), building upon the foundational work of Lee et al. (2016)

and van de Geer et al. (2014). This method allows for asymptotically valid confidence

bands for a low-dimensional subset of the high-dimensional parameter vector, providing

insights into the changes in transaction costs and threshold effects over time.

Unlike conventional nonlinear regression models, the shrinkage methods for threshold

models proposed by Lee et al. (2016) and Callot et al. (2017) do not require a prelimi-
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nary nonlinear test before estimation. This is in contrast to the conventional ‘self-exciting’

threshold autoregressive (SETAR) model, where nonlinear tests, such as Hansen’s mod-

ification of standard Chow-type tests (Hansen, 1999), Tsay’s linearity test (Tsay, 1989),

and neural network tests of linearity, are utilized to detect nonlinearity. This allows for

estimation without the need to pre-specify the existence of a threshold effect. Although

LASSO-type methods, such as those discussed in these papers, are appealing for their abil-

ity to perform variable selection, they present significant challenges for inference on the

estimated parameters. Specifically, performing inference on a model selected in a data-

driven manner without accounting for the selection process can lead to invalid results. The

post-selection inference procedures developed by Li and Yan (2024) via the debiased lasso

method effectively address these issues, enabling valid inference even without specifying

the existence of a threshold effect.

High-dimensional inference is a critical topic in statistics and econometrics; for in-

stance, estimating impulse response functions is an essential aspect of econometric in-

ference in time series models. Li and Yan (2024) also demonstrate that the debiased

LASSO estimator for threshold models can be effectively used to estimate impulse re-

sponses through local projections in high-dimensional settings, following the approach of

Adamek et al. (2024).

To simplify, let

α = [γ1, γ2, · · · ,γ ′
31 · · · ,γ ′

3L, δ1, δ2, δ
′
31 · · · , δ′

3L]
′

be the slope parameter vector with a dimension of 4 + 2pL, where p is the number of other

exogenous shocks. Let Xt be a 2 + pL vector representing all regressors at time t, X(j)
t

denote the j-th variable in Xt, and Xt(c) = Xt1{Qt−1 ≥ c} correspondingly.
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We employ a two-step estimation approach to model price linkages in spatially distinct

markets. In the first step, we estimate the parameter α̂(c) for each c ∈ C using the following

LASSO regression:

α̂(c) := argminα

{
1

T

T∑
t=1

(
∆(pjt − pkt )− [X ′

t, X
′
t(c)]

′
α
)2

+ λ ∥D(c)α∥1

}
, (5)

In this formulation, the ℓ1 penalty can be rewritten as

λ ∥D(c)α∥1 = λ

2+pL∑
j=1

[∥∥X(j)
∥∥
n

∣∣α(j)
∣∣+ ∥∥X(j)(C)

∥∥
n

∣∣α(2+pL+j)
∣∣] .

∥∥X(j)
∥∥
n
:=

(
1

T

T∑
t=1

[X
(j)
t ]2

)1/2

(6)

This adjustment ensures that the penalty is applied consistently across all coefficients,

affecting variables uniformly.

The tuning parameter λ can be selected using criteria such as the Akaike Information

Criterion (AIC), the Schwarz Information Criterion (SBC), or the plug-in procedure (PI).

Since AIC tends to produce less sparse solutions, while SBC imposes a stronger penalty on

the degrees of freedom and is more conservative in variable selection, we choose AIC for

tuning parameter selection in (5).

We define ĉ as the estimate of c0 that minimizes the following expression:

ĉ := argminc∈C⊂R

{
1

T

T∑
t=1

(
∆(pjt − pkt )− [X ′

t, X
′
t(c)]

′
α̂(c)

)2
+ λ ∥D(c)α̂(c)∥1

}
. (7)
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The bias introduced by the shrinkage in the LASSO loss function poses a challenge

in deriving the limiting distribution of the LASSO estimator. To enable valid statistical

inference, we must employ an estimation strategy to eliminate this bias. However, modeling

threshold regression with a rich set of variables introduces a unique challenge. Threshold

models involve splitting the sample based on a continuously-distributed variable, and with

a large number of regressors, there’s a risk that the number of observations in any split

sample may be smaller than the number of variables. This can lead to a reduced-rank

sample covariance matrix, rendering standard approaches inadequate.

To debias our LASSO estimator, we require an approximate inverse of a certain singular

sample covariance matrix, as discussed by Li and Yan (2024). Their approach builds on

the work of van de Geer et al. (2014), expanding a 2-by-2 block matrix to construct an

approximate inverse matrix in cases where a threshold effect may exist. For a more detailed

exploration of LASSO applied to high-dimensional threshold regression models and related

extensions, readers can refer to Li and Yan (2024). However, we do not delve into these

extensions further here.

Once ĉ is obtained, we compute the debiased LASSO estimates for the threshold model

as follows:

â(ĉ) = α̂(ĉ) +
1

T
Θ̂(ĉ)

T∑
t=1

(
∆(p1t − p2t )− [X ′

t, X
′
t(ĉ)]

′
α̂(ĉ)

)2
,

where

Θ̂(ĉ) =

 B̂(ĉ) −B̂(ĉ)

−B̂(ĉ) Â(ĉ) + B̂(ĉ)

,
and B̂(ĉ) and Â(ĉ) are the inverse or approximate inverse of the split sample covariance

matrices. Specifically, B̂(ĉ) corresponds to 1
T

∑T
t=1 [X

′
t −X ′

t(ĉ)]
′ [X ′

t −X ′
t(ĉ)], and Â(ĉ)
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corresponds to

1
T

∑T
t=1 X

′
t(ĉ)Xt(ĉ).

As Li and Yan (2024) derived the asymptotic distribution of tests involving an increas-

ing number of parameters for the debiased Lasso estimator for threshold models, it is con-

venient to conduct a test to guarantee that a threshold effect indeed exists. Although the

debiased Lasso estimates are valid for inference irrespective of whether the threshold ef-

fect is assumed a priori, we first conduct a test for linearity to check whether at least one

variable exhibits a threshold effect before presenting the debiased Lasso estimates.

For this testing problem, where the true threshold parameter c is unknown, the null

hypothesis is given by:

H0 :δ = [δ1, δ2, δ
′
31 · · · , δ′

3L]
′ = 0 versus

Ha : at least one of δ = [δ1, δ2, δ
′
31 · · · , δ′

3L]
′ ̸= 0

Under the null hypothesis, the model is linear, so this is known as a test for linearity.

Typically, a Wald-type test is employed for this purpose. Specifically, we use the estimator

â(ĉ) and test whether the second half of this vector (corresponding to δ) is zero using the

Wald test statistic. The Wald statistic is defined as:

Wn =

√
n g′â(ĉ)√
g′Ψ̂ (ĉ) g

, (8)

where Ψ̂ is the heteroskedasticity- and autocorrelation-consistent (HAC) covariance matrix

estimate. The vector g must be a 4 + 2pL vector that satisfies ∥g∥2 = 1.

To conduct this test, we debias the nonzero estimates among δ obtained from the

LASSO estimation and calculate their nonsparsity as ŝth. We then set the elements of g
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corresponding to these nonzero estimated δ values to 1/
√
ŝth.The Wald test statistic is then

asymptotically distributed as

Wn
d→ N(0, 1).

The theoretical restriction requires that the number of parameters involved in the test

can increase to infinity, but the rate of this growth must be slower than the total number of

parameters. To satisfy this condition, we focus only on the non-zero coefficients estimated

by LASSO.

Next, we aim to construct a uniformly valid Granger causality test within the high-

dimensional threshold model to examine whether an exogenous shock series Granger-

causes the price differential series ∆(pjt − pkt ). The Granger causality test is nested within

the framework proposed by Li and Yan (2024), which is similar to the Granger Causality

Tests shown in Babii et al. (2022) and Adamek et al. (2023).

As denoted in (4), zjk
t−l represents the vector for all different series at the same lag l

period. We now introduce a new notation, zjk
t (q), which captures all {1, · · · , L} lagged

period values for the q-th shock, where q = {1, · · · , p}. Correspondingly, γ3(q) is the

vector of parameters for the q-th exogenous shock. Thus, we have
∑p

q=1 γ3(q)z
jk
t (q) =∑L

l=1 γ3lz
jk
t−l. The same notation applies to δ3(q).

The null hypothesis that zjk
t (q) does not Granger-cause ∆(pjt−pkt ) and the correspond-

ing alternative hypothesis are:

H0 : γ3(q) = δ3(q) = 0 versus

Ha : at least one of the 2L parameters among γ3(q) or δ3(q) ̸= 0

The specified Wald statistic for Granger causality tests is very similar to the Wald statis-

tic used for testing linearity. In this case, we conduct the test across all periods for each
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exogenous shock. We set the elements of g corresponding to each shock to 1/
√
2L.

3 Empirical Application

The empirical analyses in our study focus on international corn markets, specifically three

of the top four major exporting markets: the US, Argentina, and Ukraine.1 Despite its

widespread consumption and spatial dispersion, corn production is typically concentrated

in specific regions. These three markets collectively accounted for approximately 60%

of the world’s corn exports by volume before the 2021/2022 marketing year. During the

2022/2023 trade year, these three exporters still maintained around 50% of world maize

export volume.2 Given the intricate spatial dynamics of the corn market, analyzing spatial

linkages is crucial for an understanding of the underlying market dynamics and overall

performance and behavior.

We collected monthly maize prices and other relevant variables from multiple sources,

which are listed in the appendix. As noted above, the main dependent variable of interest

in this study is the maize price in international markets, all measured in USD. We gathered

yellow corn export prices for the US, Ukraine, and Argentina. Additionally, we collected

exchange rates for USD/UAH (US/Ukraine), USD/ARS (US/Argentina) and UAH/ARS

(Ukraine/Argentina). For exogenous shocks, we collected the Baltic Exchange Dry Index,

measuring the cost of shipping dry goods like maize worldwide.To capture US market

factors, we collect unemployment rates, the consumer price index, the industrial production

index, interest rates, gasoline prices and corn stocks. Market factors for Ukraine, such as

1Although Brazil is also a major exporter, it is not included in our analysis due to the lack of early data,
such as data prior to 2008, within our selected time span. The rankings of these four exporting markets have
changed over time.

2This decline is partly due to the challenges faced by Ukraine in exporting corn since the Russian invasion
in February 2022, as Ukraine’s shipments by sea, which traditionally accounted for the bulk of its exports,
have been severely limited.(U.S. Department of Agriculture, Foreign Agricultural Service (2024))
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unemployment rates, the consumer price index, and the industrial production index, along

with those for Argentina, such as unemployment rates, consumer price index, and inflation

rate.34

For the U.S./Argentina estimation, our dataset includes 241 observations from January

2004 to January 2024. For the U.S./Ukraine, we have 233 observations from September

2002 to January 2022. For Ukraine/Argentina, there are 217 observations from January

2004 to January 2022.5

As mentioned previously, all exogenous shocks are measured as percentage changes

from the previous time period6, allowing a focus on immediate changes in the variables.

The basic unit of analysis used throughout is the natural logarithm of the price ratio, de-

noted as pjt − pkt (= ln(P j
t /P

k
t )), where j and k indicate locations (i.e., j, k = 1, 2, 3 denote

the US, Ukraine, and Argentina respectively), and t is a time index such that t = 1, · · · , T .

The international price data are shown in logarithmic form in Figure 1b.

Figure 2 presents a graphical representation of logarithmic pairs of prices plotted

against each other, offering insights into the relationship between price levels and price

3Cubic spline interpolation was employed to estimate the missing data. The Ukraine price data has 19
missing observations from September 2002 to January 2022. Additionally, due to changes in the units of
measurement reported by the data source for the consumer price index and industrial production index, each
variable has two gaps, including the Ukraine consumer price index, industrial production index, and the
Argentinian industrial production index.

4To align the data frequencies for our econometric analysis, cubic spline interpolation was applied to
convert the quarterly US corn stock, Argentina unemployment rate and Ukraine employment rate into the
same frequency as all other monthly variables.The data for US corn beginning stocks spans from 2002 Q3 to
2024 Q1 (we use standard calendar quarters; however, the data source uses the market year, which refers to
the start of the main harvest), resulting in 87 observations corresponding to 256 monthly observations. The
data for Ukrainian unemployment ranges from 2002 Q3 to 2021 Q4, totaling 78 observations, which have
been converted to 233-month observations. The data for Argentinian unemployment spans from 2003 Q4
to 2024 Q1, comprising 82 observations, which have been converted to 240-month observations. Note that
these variables are typically not volatile on a month-to-month basis, making spline interpolation a reasonable
approach to converting the data to a monthly basis.

5The shorter time span for Ukraine-related cases is due to the availability of unemployment data only until
2021 Q4. Data release delays have occurred due to the ongoing military conflict, as outlined in Ukraine’s law
on reporting during martial law.

6The differential of the natural logarithm of the value serves as an approximation of this percentage.

19



differentials. Deviations from the 45-degree line in each plot reveal distinct basis patterns,

where one price tends to be higher or lower than the other. These patterns likely reveal

the influence of transaction costs associated with regionally distinct market trades. While

these countries are exporters only, in the market integration framework, maize flows be-

tween the three markets can occur in any direction, depending on potentially profitable

arbitrage opportunities. Our observations from the figures indicate that situations where

the price of Ukrainian maize surpasses the prices of US maize and Argentina maize occur

more frequently.

To examine the characteristics of time series prices and identify the most appropriate

model for evaluating spatial price linkages, we conducted augmented Dickey-Fuller tests

for each pair of price differentials. The results of the Augmented Dickey-Fuller (ADF) tests

for the stationarity of the price differentials are presented in Table 1 in the appendix, which

indicates that the null hypothesis of nonstationarity of the price differentials is strongly

rejected in every case. This is as expected since a nonstationary differential would imply

that prices can drift arbitrarily far apart.

Transmission elasticities( ∂P
j
t

∂Pk
t

) close to one provide support for market integration,

with 1.0 corresponding to perfect market integration. Before consideration of two-regime

switching models, we consider a suite of tests intended to detect departures from linearity

in conventional time-series models. A range of (non-) linearity tests were conducted for

the price data. We applied a standard Self-Exciting Threshold AutoRegressive (SETAR)

model, as formulated by Goodwin and Piggott (2001), to prices in spatially distinct markets

for each of the market pairs. The specification is given by:

∆(pjt − pkt ) =γ1(p
j
t−1 − pkt−1) + 1{Qt−1 > c}

[
δ1(p

j
t−1 − pkt−1)

]
+ εt (9)
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where c is a threshold parameter, and γ1 + δ1 is the parameter for ‘trade’ regime. Each

of the linearity tests was applied to the collection of prices. Tests on pairs of prices were

conducted on the differential between logarithmic prices. The nonlinearity testing results

are presented in Table 2.

We implemented a set of nonlinearity tests using the R package ‘nonlinearTseries’

Garcia (2024) including Teraesvirta’s neural network test, White’s neural network test,

Keenan’s one-degree test, Tsay’s test for quadratic nonlinearity, the likelihood ratio test for

threshold nonlinearity, and the test of linearity against threshold (SETAR)7 Hansen (1999).

At the 85% confidence level, both the USA/Ukraine and Ukraine/Argentina price differ-

entials show evidence of rejecting linearity across multiple tests, suggesting the potential

presence of threshold nonlinearity. The USA/Ukraine price differential exhibits some ev-

idence of threshold nonlinearity, particularly in the Likelihood Ratio Test, but does not

reject other linearity tests. The Ukraine/Argentina time series demonstrates stronger ev-

idence of nonlinearity in several tests, especially in the SETAR 2 vs 3 and 1vs3 tests,

indicating that this time series may align more closely with a complex nonlinear model. In

contrast, theUSA/Argentina time series does not show significant nonlinearity across any

of the tests.Threshold models are a likely candidate for a nonlinear representation of the

price relationships.

The question remains as to the most appropriate specification of the alternative models

of price parity. We have suggested that, despite the fact that prices are all quoted in US

dollar terms, exchange rates may nevertheless play a role in international price linkages.

Specifically, if import prices pertain to an intermediary step in trade between internal mar-

kets, where different currencies may exist, and international markets, exchange rates may

7Hansen’s test of linearity against threshold, using 1000 bootstrap replications, was applied in this analy-
sis.
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still be relevant to the price linkages. If exchange rates are found to exert a statistically sig-

nificant effect on price linkages, exchange rate over- or under-shooting may exist. Further,

it is unclear as to whether additional variables may be relevant to price linkages. Markets

are separated by unobservable transactions costs, which may in turn be influenced by other

economic variables. Hence, we utilize LASSO methods to select an optimal specification.

We estimate five versions of an ‘error correction’ model of spatial price linkages, each

progressively more detailed. The first model is a simple linear ‘error correction’ model

based solely on price differentials. The second model introduces exchange rates into the

analysis. A third model explores nonlinear relationships by applying a threshold autore-

gressive model that considers price differentials alone. The fourth model extends the

threshold model to include both price differentials and exchange rates. Finally, we esti-

mate a model that incorporates additional covariates, as estimated by the debiased LASSO

method of Li and Yan (2024). These additional covariates are intended to capture residual

factors that may cause simple price linkages to deviate from equilibrium parity conditions.

We initially estimate price relationships for the three pairs of market prices using a

standard autoregressive model of the form:

∆(pjt − pkt ) = γ1(p
j
t−1 − pkt−1), (10)

where (j, k) = {(1, 2), (1, 3), (2, 3)}, with the indices representing the US, Ukraine, and

Argentina as 1, 2, 3 respectively.γ1 are parameters reflecting the degree of market integra-

tion. In particular, we expect a small but negative value of γ1, so the price differential

pjt − pkt converges to 0 at the rate of 1 + γ1 < 1. A value of γ1 closer to zero implies

a slower adjustment to shocks. This model has been used extensively to evaluate price

transmission and parity conditions.
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Moreover, we then extend our analysis to include the exchange rate, considering the

following specification:

∆(pjt − pkt ) = γ1(p
j
t−1 − pkt−1) + γ2π

jk
t , (11)

where πjk
t is the exchange rate between countries one and two. If γ2 is significantly different

from zero, imperfect exchange rate pass-through is implied. It may seem odd to evaluate

exchange rate effects when prices are quoted in a single currency, but price distortions

caused by exchange rate shocks are possible, even in such cases. This is because prices of

goods invoiced in a foreign currency must be converted to national currency terms in order

for proper comparisons to be made to internal prices.

Besides model (10) and (11), we then try the threshold tyape model. the third model

is as shown in (9). In addition, we use exchange rates as covariates and estimate threshold

models of the form:

∆(pjt − pkt ) =γ1(p
j
t−1 − pkt−1) + γ2π

jk
t

+1{Qt−1 ≥ c}
[
δ1(p

j
t−1 − pkt−1) + δ2π

jk
t

]
+ εt.

(12)

In the threshold context, the symmetric lagged price differential Qt−1 = |pjt−1 − pkt−1|

transforms into Q̃t, representing the quantile of Qt−1 in selected samples. The estimation

of thresholds is conducted using a grid search. An assumption is made that all Qt−1 values

are distinct. This is a convenient condition, ensuring that the transformation into quantiles

is a one-to-one function without any loss of generality. This assumption holds under the

assumption of a continuous distribution for Qt−1.

Tables 3, 4, and 5 present the estimates for the models described above. All eror cor-

rection estimates are negative and significant with model (10) and (11). In the threshold
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models (9) and (12), we expect γ1 + δ1 < γ1 < 0 based on our conceptual framework.

With only price differentials, the estimates show that the speed of adjustment in the ‘trade’

regime is much faster than the speed of adjustment in the ‘no-trade’ regime, except in the

model (9) for Ukraine/Argentina. For the ‘no-trade’ regime, the degree of ‘error correc-

tion’ is positive but insignificant in the USA/Ukraine and USA/Argentina models of (9).

This finding is consistent with expectations, as our conceptual framework suggests that

markets are not linked in the ‘no-trade’ regime. As expected, the threshold models imply

much faster adjustment to deviations from equilibrium conditions than when thresholds are

ignored.

When exchange rates are considered, models (11) consistently suggest that the degree

of ‘error correction’ in response to deviations from equilibrium is at least as fast as in

models that omit exchange rates.

It’s interesting to note that in the linear model (11), significant imperfect pass-through is

only observed between the USA and Ukraine markets. In this case, exchange rate changes

are not fully transmitted to final prices, indicating some insulation in pricing behavior.

However, this pattern of imperfect pass-through is not consistently observed in other mar-

kets within the linear framework. When considering the threshold model (denoted as (12)),

differences in exchange rate pass-through are observed across all market cases. This model

reveals a notably more complex and varied pattern of imperfect pass-through for each mar-

ket pair. The threshold behavior introduces nonlinearity, allowing the model to capture and

highlight imperfections in exchange rate transmission, showing how each regime responds

differently to exchange rate fluctuations. This nonlinearity underscores the unique pass-

through dynamics in different trading conditions, emphasizing the role of the threshold in

determining market responses.

As previously mentioned, the model (4) and estimation procedures for threshold regres-
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sion we use provide the advantage of variable selection and threshold detection, thereby

eliminating the need for conventional nonlinear tests typically required in threshold mod-

els. In our study, we consider a number of potential covariates conceptually relevant to price

transmission between the various international markets. The covariates included across all

market pairs are the exchange rate, the Baltic Exchange Dry Index, unemployment rates,

and industrial production indexes for each market. Additionally, for pairs involving the US,

we incorporate US interest rates, US corn stocks, and US gas prices as control variables.

Due to data availability, consumer price indexes are used for the US and Ukraine, while in-

flation rates are applied for Argentina. Besides, we choose the possible maximal lag order

of L = 6 for the monthly dataset.

To ensure comparability with our baseline model (the linear model that includes price

differentials and exchange rates), we set the first and second elements in the scaling diago-

nal matrix D(c) in (5) to 0. This guarantees that the LASSO estimation will always select

the parameters γ1 and γ2 in (4). We report the estimates of γ1, γ2, δ1, and δ2 in Tables

3, 4, and 5. If the first-step LASSO does not select the variables, their debiased LASSO

estimates are always insignificant. The AIC values reported are based on the LASSO esti-

mations of (5) and (7). Since the debiasing procedure is conducted for inference, it despar-

sifies all estimators, making them nonzero. If we calculate the AIC based on the debiased

results, we cannot directly compare all five models at the same stage. Although the AIC

for (4) is not always the smallest in all cases, this occurs because the objective functions of

the fixed-dimension models (i.e., (10), (11), (9), and (12)) do not include the penalty term

that is always considered in LASSO.

To further validate the presence of a threshold effect, we conduct a test for linearity, as

shown in Section 2. This test checks whether at least one parameter among the subset of

threshold effect parameters (i.e., those that LASSO selects as non-zero) has a threshold ef-
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fect before illustrating the debiased LASSO estimates. As shown in Table 6, we statistically

reject the null hypothesis that the model is linear for every market pair.

These findings provide a basis for examining the two-regime adjustments in the mar-

kets. In all three cases, the estimates of adjustment in response to deviations from equilib-

rium (γ1) are negative and close to zero, indicating a consistent correction mechanism. The

nonlinear impact of the degree of ‘error correction’ aligns with our conceptual framework,

as all γ2 estimates are also negative and close to zero. Notably, all these results are sta-

tistically significant. Regarding exchange rate pass-through, a significant threshold effect

is observed between the USA and Argentina. This indicates substantial differences in ex-

change rate pass-through between two regimes, with distinct responses in each regime. In

contrast, when examining the exchange rate pass-through between Ukraine and Argentina,

the structural exchange rate pass-through effect is significant but reveals similar imperfect

pass-through across these two markets, regardless of the regime.

Our preferred specification is that allowing selected covariates to impact price transmis-

sion linkages. As noted above, we considered a number of potentially relevant covariates

in order to consider how they may affect price linkages. The significance of these factors

is revealed through a consideration of Granger causality tests. These tests evaluate the un-

derlying dynamic relationships among the covariates and price linkages. Table 7 contains

the Granger causality testing results. The p-values highlight the key drivers of these market

adjustments. Notably, the unemployment rates and consumer price indexes (or inflation)

for all countries are significant at least at the 1% significance level. Additionally, the US

Industrial Production Index is significant in the case involving the USA/Argentina. This

indicates that these factors are relevant to the relationship between the international prices.

These factors may proxy for unobserved barriers to price transmission or trade.

Given the use of distributed lag models with long lags in several specifications, it is
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often useful to compute a summary statistic of cumulative effect.8 We focus only on control

variables that pass Granger causality tests, including unemployment rates, consumer price

indexes (or inflation) for all three country, and the U.S. Industrial Production Index. For

these variables, we calculate the cumulative effect along with its standard error.

Table 8 displays only the direction (positive or negative) of these cumulative effects

and includes only those effects that are statistically significant. Our findings indicate that

variables such as the U.S. Consumer Price Index, Argentina’s unemployment rate in the

U.S./Argentina pair, and Ukraine’s unemployment rate in the Ukraine/Argentina pair show

significant positive cumulative effects within the trade regime. This suggests that these

variables negatively impact the market’s ability to return to equilibrium. In other words,

when these factors rise, they create disruptions that prevent the market from reaching equi-

librium, highlighting the potential need for specific policy interventions to mitigate these

obstacles in the trade environment. In the case of the US/Ukraine price differential, the US

industrial production index decreases the price differential in the trade regime, suggesting

that economic growth results in smaller price differences.

4 Summary and Concluding Remarks

In this study, we develop a comprehensive model of market integration in spatially distinct

international maize export markets, focusing on the degree of ‘error correction,’ exchange

rate pass-through, and the influence of other market factors. By situating these models

within high-dimensional threshold frameworks and incorporating an expanding set of co-

variates relevant to spatial market integration, we extend the current literature on interna-

tional maize markets. The use of debiased LASSO estimation, along with linearity tests and

8Cumulative effects are taken from impulse response functions, which are not presented here in the interest
of space but are available on request.
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Granger causality tests, allows for a comprehensive exploration of the underlying nonlinear

dynamics driving maize market integration.

Our findings are consistent with the existing literature (Goodwin and Piggott (2001),

Goodwin et al. (2021) et al.), demonstrating a faster adjustment to deviations from market

equilibrium during periods of profitable trade and arbitrage compared to ‘no-trade’ scenar-

ios. This suggests that spatially distinct maize markets are more responsive to price signals

when trading opportunities are present, indicating the efficiency of market integration in the

presence of potential arbitrage. Furthermore, our results reveal strong linkages across the

examined markets, highlighting the importance of nonlinear adjustments in understanding

international maize market dynamics.

While our results support the hypothesis of perfect exchange rate pass-through in most

cases, we identify significant instances of imperfect pass-through, particularly in ‘trade’

regimes. This observation points to the important role of exchange rates in influencing

cross-border maize price integration. Additionally, the Granger causality tests highlight

the significance of macroeconomic factors, such as unemployment rates and consumer

prices, in shaping market integration.These factors lead to periods of disequilibrium, cre-

ating greater arbitrage opportunities and illustrating the complexity of international maize

market integration.

Overall, our study demonstrates the effectiveness of high-dimensional threshold mod-

els and debiased LASSO estimation in capturing the complex and nonlinear characteristics

of international maize markets. The inclusion of a broad set of covariates and the identifi-

cation of key drivers of market adjustments contribute to a more thorough understanding of

the interactions among spatially distinct markets. Future research could further explore the

dynamic relationships between macroeconomic variables, trade policies, and market inte-

gration, especially in the context of evolving global trade dynamics and emerging market
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disruptions.
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5 Tables and Figures

Price Pair Dickey-Fuller Statistic Lag Order p-value

Ukraine/Argentina -4.6972 6 < 0.01
USA/Argentina -4.5451 6 < 0.01
USA/Ukraine -4.7320 6 < 0.01

Table 1: Augmented Dickey-Fuller Test Results
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Test / Time Series USA/UKR USA/Argentina Ukraine/Argentina

Teraesvirta’s Neural Network Test
χ2 1.521 2.168 1.865

p-value 0.467 0.338 0.394

White Neural Network Test
χ2 0.714 1.497 2.326

p-value 0.700 0.473 0.313

Keenan’s One-Degree Test
F-statistic 1.391 1.558 0.799
p-value 0.239 0.213 0.372

Tsay’s Test for Nonlinearity
F-statistic 1.169 0.668 1.496
p-value 0.251 0.572 0.181

Likelihood Ratio Test for Threshold Nonlinearity
χ2 22.724 5.846 6.644

p-value 0.078∗ 0.335 0.340

SETAR 2 vs 3 Test
Test Statistic 8.284 7.207 15.145

p-value 0.300 0.409 0.021∗

SETAR Linearity Test (1vs2 and 1vs3)
1vs2 Test Statistic 5.808 7.120 4.220

1vs2 p-value 0.531 0.367 0.781
1vs3 Test Statistic 14.299 14.541 19.661

1vs3 p-value 0.406 0.379 0.113∗

Note: ∗p<0.15

Table 2: Summary of Nonlinearity and SETAR Test Results

35



(1
0)

(1
1)

(9
)

(1
2)

(4
)

D
eg

re
e

of
E

rr
or

C
or

re
ct

io
n

-0
.1

07
∗∗

∗
-0

.1
29

∗∗
∗

0.
04

1
-0

.1
31

∗∗
∗

-0
.1

23
∗∗

γ
1

(0
.0

29
)

(0
.0

32
)

(0
.0

67
)

(0
.0

41
)

(0
.0

56
)

E
xc

ha
ng

e
R

at
e

-0
.0

03
∗

-0
.0

03
-0

.0
08

γ
2

(0
.0

02
)

(0
.0

02
)

(0
.0

11
)

T
hr

es
ho

ld
D

eg
re

e
of

E
rr

or
C

or
re

ct
io

n
-0

.1
82

∗∗
-0

.0
70

-0
.0

06
∗∗

∗

δ 1
(0

.0
75

)
(0

.0
72

)
(0

.0
00

)
T

hr
es

ho
ld

E
xc

ha
ng

e
R

at
e

-0
.0

33
∗∗

0.
00

5
δ 2

(0
.0

14
)

(0
.0

06
)

T
hr

es
ho

ld
E

st
im

at
e

0.
13

4
0.

30
9

0.
03

8

O
bs

er
va

tio
ns

23
3

23
3

23
3

23
3

23
3

A
IC

-1
27

9.
18

2
12

80
.0

67
-1

28
3.

08
3

-1
28

3.
35

9
-1

28
3.

16
2

N
ot

e:
∗ p
<

0.
1;

∗∗
p<

0.
05

;∗
∗∗

p<
0.

01

Table 3: Model Estimates of Error-Correction Model: USA/Ukraine
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Table 4: Model Estimates of Error-Correction Model: USA/Argentina
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Table 5: Model Estimates of Error-Correction Model: Ukraine/Argentina
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Wald Test Statistic p-value

USA/Ukraine 6.871 0.000∗∗∗

USA/Argentina 3.615 0.000∗∗∗

Ukraine/Argentina 8.433 0.000∗∗∗

Note: ∗∗∗p<0.01

Table 6: Test for Linearity

39



USA/Ukraine Wald Test Statistic p-value

Exchange Rate 0.749 0.454
Baltic Dry Index 0.105 0.916

US Consumer Price 13.094 0.000∗∗∗

US Industrial Production 1.244 0.213
US Unemployment 7.885 0.000∗∗∗

US Corn Stocks 0.059 0.953
US Gas 0.333 0.739

Ukraine Consumer Price 2.731 0.006∗∗∗

Ukraine Industry Production 0.410 0.682
Ukraine Unemployment 48.434 0.000∗∗∗

USA/Argentina Wald Test Statistic p-value

Exchange Rate 1.244 0.214
Baltic Dry Index Price 0.094 0.925

US Consumer Price 18.022 0.000∗∗∗

US Industrial Production 3.469 0.001∗∗∗

US Unemployment 8.104 0.000∗∗∗

US Corn Stocks 0.085 0.932
US Gas 0.872 0.383

Argentina Inflation 3.331 0.001∗∗∗

Argentina Industrial Production 0.831 0.406
Argentina Unemployment 89.417 0.000∗∗∗

Ukraine/Argentina Wald Test Statistic p-value

Exchange Rate 0.658 0.511
Baltic Dry Index Price 0.154 0.878

Ukraine Consumer Price 5.184 0.000∗∗∗

Ukraine Industry Production 0.932 0.351
Ukraine Unemployment 116.757 0.000∗∗∗

Argentina Inflation 2.990 0.003∗∗∗

Argentina Industrial Production 0.975 0.329
Argentina Unemployment 91.603 0.000∗∗∗

Note: ∗∗∗p<0.01

Table 7: Granger Causality Test Results
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US Ukraine US Argentina Ukraine Argentina

No Trade Trade No Trade Trade No Trade Trade

US Consumer Price + +
US Unemployment -
Ukraine Consumer Price -
Ukraine Unemployment - +
Argentina Inflation
Argentina Unemployment +
US Industrial Production - +

Table 8: Significant Cumulative Effect Signs
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(a)

(b)

Figure 1: (a) Global Corn Exports by Country and Marketing Year, Source: U.S. Depart-
ment of Agriculture, Foreign Agricultural Service (2024). (b) Maize Retail Price Series (in
log terms) by Country
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Figure 2: Maize Market Prices Pairs (in logarithms)
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