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Abstract

This paper addresses statistical inference for high-dimensional threshold regression parame-
ters. I establish oracle inequalities for the scaled LASSO estimator proposed by Lee, Seo, and
Shin, assuming only non-subgaussian error terms and covariates. Subsequently, I desparsify (or
debias) the scaled LASSO estimator and derive the asymptotic distribution of tests involving
an increasing number of slope parameters in the sense of van de Geer et al. (2014). Utilizing
these results, I construct asymptotically valid confidence intervals for the components of the
threshold regression slope coefficients. To complement the asymptotic theory in this paper, [
conduct simulation studies to demonstrate the performance of my method in finite samples.
JEL classification: C12, C13, C24.

1 Introduction

Threshold models are a popular way to characterize nonlinearities in economic relationships. Hansen
(1996) and Hansen (2000) show how the least squares estimation of threshold models is possible and
feasible in fixed-dimensional settings, where the number of observations is much larger than the
number of variables. These two papers develop a non-standard asymptotic theory of inference which
allows for the construction of confidence intervals for the regression estimates, as well as testing of
hypotheses for the presence of a threshold. Later, Caner and Hansen (2004) developed instrumental
variable estimation techniques that allow for the covariates to be endogenous.

Let {(V;, X;,Q;) : i =1,...,n} be a sample of independent observations such that
(11) Y; :X:ﬁ(]ﬂ-X;(s(]l{Ql <T()}+UZ', 1=1,...,n,

where for each i, X; is a p x 1 vector, Q; is a scalar, U; is error terms, and 1{-} denotes the indicator
function. The scalar variable @; is the threshold variable determining regime switching and ¢ is

the unknown threshold parameter.
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Threshold models have been well studied and applied in econometrics. In empirical studies,
threshold models have been used to investigate the non-linearity in the threshold effect of govern-
ment debt on economic output(e.g. Chudik et al. (2017), Afonso and Jalles (2013), Grennes et al.
(2010)). Recently, there has been a growing interest in panel threshold models. Seo and Shin (2016)
propose a two-step GMM estimator for the dynamic panel threshold model, which also allows for the
endogeneity of either the covariates or the threshold variables. Miao et al. (2020) study estimation
and inference in a panel threshold model in the presence of interactive fixed effects. Miao et al.
(2020) consider latent group structures in a panel threshold regression model, which allows for the
slope coefficients and threshold parameters to vary across individual units.

Interest in high-dimensional data has motivated much recent research on LASSO for threshold
regression. Lee et al. (2016) establish sparsity oracle inequalities for the prediction norm and esti-
mation error of the scaled LASSO applied to (1.1) in the case of fixed regressors and Gaussian error
terms for both the no threshold effect case and the threshold effect case. In their simulation section,
they also extended their results to random regressors with Gaussian errors. Callot et al. (2017)
develop sup-norm oracle inequalities for the estimation error of the LASSO of Lee et al. (2016).
Then they propose a thresholded scaled LASSO estimator based on the sup-norm bound to provide
threshold selection consistency or even model selection consistency.

Rapid technological advancements in data collection and processing have led to the analysis of
high-dimensional datasets, where the number of variables far exceeds the sample size. In such high-
dimensional settings, classical inferential procedures, such as maximum likelihood, are no longer
valid. Consequently, there is a pressing need to develop new principles, theories, and methods for
parameter estimation, hypothesis testing, and confidence intervals (CIs). Our approach is an adap-
tation of the desparsifying a LASSO estimator introduced in van de Geer et al. (2014). Specifically,
van de Geer et al. (2014) propose a desparsified LASSO estimator and construct asymptotically
valid confidence bands for the estimated parameter. Similar advancements were made in the pa-
pers by Zhang and Zhang (2014) and Javanmard and Montanari (2014). The idea is to remove the
bias introduced by shrinkage by desparsifying the estimator with a constructed approximate inverse
of a singular sample covariance matrix for estimating high-dimensional regression models. Two
approaches are widely used to construct the approximate inverse matrix: the nodewise regression
introduced by Meinshausen and Bithlmann (2006) and the CLIME estimator of Cai et al. (2011).

Much of the present work is devoted to solving the inference problem in a high-dimensional
linear model by desparsifying LASSO-type estimators to construct asymptotically valid confidence
bands for the parameters of interest. Caner and Kock (2018) propose the conservative LASSO
estimator allowing for non-identically distributed or non-sub-Gaussian error terms and develop the
asymptotic distribution of tests involving an increasing number of parameters. Gold et al. (2020)
propose a desparsified LASSO based on a two-stage least squares estimator with sub-Gaussian
data and homoskedastic errors for a high-dimensional instrumental variables regression. They allow
both the number of instruments and the number of regressors to be greater than the sample size.
Another relevant paper is by Caner and Kock (2019), which develops a desparsified GMM estimator

for estimating a high-dimensional instrumental variables regression that has many more endogenous



regressors than observations. In their simulations, they compare it to the estimator in Gold et al.
(2020). Belloni et al. (2019) provide a new way of handling linear and nonlinear instrumental
variables regression as well as relaxing the sparsity assumption.

The present work, as introduced by Belloni et al. (2014) and Semenova et al. (2021), proposes
estimation methods for desparsification in treatment effects. In the context of generalized linear
models, relevant articles include those by Belloni et al. (2016) and Caner (2023). Additionally, it’s
worth noting that high-dimensional time series models are considered in papers by Adamek et al.
(2023). Moreover, high-dimensional panel data models are addressed in works by Kock (2016), Kock
and Tang (2019), and Chiang et al. (2023).

Overall, we contribute to the literature in two ways. Our primary contribution is to develop a
desparsified LASSO estimator for the threshold regression in the high-dimensional regime: p >> n—
that is, if p, the number of variables is much larger than n, the number of observations. The estimator
in Lee et al. (2016) may be desparsified in the sense of van de Geer et al. (2014) in order to construct
asymptotically uniform confidence intervals for the parameters of interest and hypothesis tests under
a sparse setting. Despite the considerable progress that has been made for inference in linear high-
dimensional regression, only a few papers provide theoretical insights into more complex models,
such as nonlinear models. Another contribution involves extending oracle inequalities for the LASSO
estimator for high-dimensional threshold regression to non-subgaussian error terms and regressors,
using the maximal inequalities by Chernozhukov et al. (2017). Strengthening our assumption of
sub-Gaussianity could deliver even stronger results.

The rest of the paper is organized as follows. Section 2 recalls the LASSO estimator of Lee et al.
(2016). In Section 3 we develop oracle inequalities for the LASSO estimator of regression slopes
as well as the threshold estimator only assuming non-sub-Gaussian error terms and regressors. In
section 4 we propose a desparsified LASSO estimator for the high-dimensional threshold regression
model and derive the asymptotic distribution of hypothesis tests for slope parameters based on an
adaptation of the work in van de Geer et al. (2014). In section 5 we investigate the finite sample
properties of the desparsified LASSO for threshold models and compare it to the desparsified LASSO
estimator for linear models of van de Geer et al. (2014). All proofs are deferred to the Appendix.

2 The Model

Notation

For {(Y;, X;,Q;) : i =1,...,n} following (1.1), let bold font X;(7) denote the (2p x 1) vector such
that X;(7) = (X/, X/1{Q; < 7})" and let X(7) denote the (n x 2p) matrix whose i-th row is X;(7)’.
Let X and X(7) denote the first and last p columns of X(7) , respectively.

For any L x 1 real vector a, let [[al[, denote the {4 norm of a. Particularly, if a = (a1,...,an)’,

n-dimensional vector, the prediction norm is defined as [|al|,, := /2 >, a?.
Also, let J(a) := {j € {1,...,L} : a; # 0} and let |J(a)| denote the cardinality of J(a). Let
M (a) denote the number of nonzero elements of a, i.e. M(a) = |J(a)|. Then we let by € RY denote



the vector has the same coordinates as a on J and zero coordinates on the complement J. Let the
superscript /) denote the j-th element of a vector or the j-th column of a matrix depending on the
context.

For any mxn matrix A, we define || A]| o = maxi<i<m,1<j<n |4ij|- |Alli. = maxi<i<m Z?:l |4
denotes the induced lo-norm of A. Similarly, ||A]|;, := maxi<j<, Y iv; |4ij| denotes the induced
l1-norm of A.

o~

FinaHY7 define f(a,T) (SC, Q) = xlﬂ + xldl{q < T}a f()(xa q) = ‘T//BO =+ 1'/501{(] < T0}7 and f(xa q) =

PN . ~ 2
x'B+2'61{q < 7}. Then, we define the prediction norm as Hf — foH = \/}L Sy (f(Xl-, Qi) — fo(Xi, QZ)) .
n
Throughout the paper, we use the superscript zero to signify the true parameter value.

2.1 LASSO Estimation

We consider the model in (1.1). It can be written as

2.1) v _ {Xéﬂo + U, if Q; > 7o,

X!(Bo + o) + U; if Qs < 70.

@; in the above model is used to split the sample into two groups. When Q; < 79, the regression
function becomes X/(Bo + do) + U;; if Q; > 7o, the regression function reduces to X5y + U;. As dg
is the change of regression coefficients between two regimes, the model in (1.1) captures a regime
switch based on an observable scalar variable ); with a scalar unknown parameter 75. The case
of o = 0 corresponds to the linear model. If 5 = 0, then this case amounts to selecting the linear
model.

Recall the model in Lee et al. (2016). Further assumptions in the model are detailed in Section

3. Let ag = (B}, )" Then, using notation defined above, we can rewrite (1.1) as
(22) Yz ZXi(To)/Oéo—FUZ‘, 1= 1,,7’1

ag is the 2p x 1 population vector of coefficients, which we shall assume to be sparse. However,
the location of the non-zero coefficients is unknown and potentially 2p could be much greater than
n. We assume that the explanatory variables are exogenous and precise assumptions will be made
in Assumption 1 below. Let Jy = J(ag), denote the set of non-zero coeflicients and sg = |Jy|, the
cardinality. In this paper, we study the high-dimensional case where p is much greater than n.

Let Y := (Y1,...,Y,) . For any 7 € T, where T := [to, 1] is a parameter space for 7y, consider

the residual sum of squares

Sulanr) = 1S (Vi — X — XI51{Q; < 71}’
(2.3) ;

IY —X(r)al,,

where a = (5',4")’.



The scaled LASSO for threshold regression is defined as the one-step minimizer such that:
(2.4) (@,7) = argmin,cgcr2r reTCR {Sn(a,7) + A HD(T)OZ||1} )

where B is a parameter space for ag and A is a tuning parameter chosen by the researcher which we

discuss further in Section 3. The (2p x 2p) diagonal weighting matrix is denoted as follows:

(2.5) D(r) = diag{HX(j)(T) =1, 2p} ,

n

where X @) (1) denotes the j-th column of X (7). Furthermore, we can rewrite the £; penalty as

Oé(j)‘
n

AD(r)all, = AZ |x()

Oé(erj)H ,

[~ 1

i e

a(j)‘ I HXQ')(T)

n n

J

Il
-

To be more exact, (&, 7) in (2.4) can be regarded as a two-step minimizer such that:
Step 1.
For each 7 € T, @(r) is defined as

(2.6) a(r) := argmingepcres {Sn(a, 7) + A[D(7)al| },

Step 2.
Define 7 as the estimator of 7y such that:

(2.7) 7 = argmin crcg {9 (a(7), 7) + AID(T)a(7)ll; } -

It is worth mentioning that a(7) is the weighted LASSO that uses a data-dependent ¢; penalty
to balance covariates adequately. Additionally, 7 is an interval and in accordance with Lee et al.
(2016), we define the maximum of the interval as the estimator 7. For any n, it suffices in practice to
search over @1, - @, as candidates for 7, as these are the points where 1{Q; > 7},i=1,---n will

change. To put it another way, we think the parameter space T is divided into n intervals depending

on Q17"'Qn'

3 Oracle inequalities

In this section, we establish the oracle inequality for the scaled LASSO estimator in (2.4). As we
are considering a random design as opposed to a fixed regressor design in Lee et al. (2016), our
assumptions are imposed in a slightly different form. Note Lee et al. (2016) have already argued

how some of their assumptions could be valid in a random design.



Assumption 1. Let {X;,U;,Q;}.—, denote a sample of size n, where the covariates {X;,Q;},_, are
independently and identically distributed (i.i.d.). Additionally, the error terms {U;};_, are assumed
to be independently distributed.

(i)For the parameter space B for ag, any a = (o, -+ ,a9,) € B C R? including oy, satisfies
lalloe < Ch, for some constant C1 > 0. M(ag) < so and m = 0,(1).

(it) Marginal distribution of Q; is uniform (0,1). 70 € T = [to,t1] with 0 < tg < t; < 1.

(111) maxi<;<p B [(Xi(j))ﬂ < C% and minj<j<, F [(Xi(j)(to))ﬂ > C% uniformly in n for some
ungversal constants Co and Cs. E [Xi(j)Xi(l)|Qi = T:| s continuous and bounded when T is in a
neighborhood of 19 for all 1 < j,1 < p.

(iv) The error terms E(U;| X;,Q;) = 0 and E(U?) < C < oo for a positive universal constant C.

/ 2 Moo .
(7}) W = 0p(1) where MUX = mMaxXj <<y MaX1<j<p ‘U,LXZ(J)|

(vi) 7%/@ = 0,(1) where Mxx = maxi<;<, MaxXi<,<p |Xi(j)XZ.(l) - E[Xi(j)Xi(l)H.

(vii) Y20V (1), where Myr, = mass <icn maxi < [(X9(10))? = B(X9(10))?).

Assumption 1 stipulates that the covariates are independently and identically distributed. The
choice of identical distribution for the covariates is primarily motivated by maintaining simplic-
ity in expressions, although there is flexibility to relax this assumption. Notably, the error terms
are permitted to exhibit non-identical distribution, allowing for the possibility of conditional het-
eroskedasticity.

Assumption 1 (i) imposes restrictions for each component of the slope parameter vector. The
second part of Assumption 1 (i) implies that sg and ||dp||1 can increase with n.

Next, we describe how to solve the problem where the distribution of the threshold variable is
not uniform. This technique is based on empirically transforming the distribution of the threshold
variables to a uniform distribution. Suppose that the threshold variable {Q} has a continuous
distribution for which the cumulative distribution function is FQ. The probability integral transform

implies that the random variable () has a standard uniform distribution where @ is defined as
rank of Q; among {Ql}n,1

Q="Fg (Q). To transform the marginals, we compute @Q; = ﬁ@(@l) = — , where
~ ~ n
Fg denotes the empirical distribution functions of the data {Ql} . In particular, as a result of a
i=1
- n
continuous distribution, there is no tie among {Ql} . We will show that the performance of our

estimator does not depend on whether the threshold Zv:ariable(Qi) is part of the set of covariates(X;)
or correlated with the covariates in Section 5.

Assumption 1 (iii) to (vii) states restrictions on the covariates as well as the error terms in the
random design setup studied in this article. Compared to Assumption 1 in Lee et al. (2016), we only
assume the covariates and error terms are independently and identically distributed with uniformly
bounded certain moments instead of sub-Gaussian data (Callot et al. (2017)) due to Chernozhukov
et al. (2017). That is a much stronger assumption than the one imposed here and rules out data
with heavy tails. Assumption 1 (ii) implies that min;—; ..., Q; < to. Intuitively, we assume that
min; <<, E [(Xi(j)(to))ﬂ is bounded away from 0.



Assumption 1 (iii) is a much stronger assumption than necessary conditions for the maximal
inequality due to Chernozhukov et al. (2017). Apply the Cauchy-Schwarz Inequality to obtain the

following:
(1)  max E [X( Dx (l)} < C3 uniformly in n;
<Gl<p

(#) max var(U; X( )), maX var(UX I{Qz < 70}), max va7"(Xi(j)Xi(l))7 max var(Xi(j)Xi(l)),
1<j;<p 1<j<p 1<5,l<p

max var(X(J)X(l 1{Q; < To}) | max var(X(J)X(l 1{Q, < T0}) and max var(X(j)(to)) are bounded
1<5,i<p IU<p 1<j<p

away from infinity uniformly in n.

Assumption 1 is used to establish the oracle inequality in Lemma 1, Theorem 1 and 2.
Now define

C Vlogp
poVn

as the tuning parameter in (2.4) for a constant C' and a fixed constant u € (0,1).

(3.1) A=

Lemma 1. Under Assumption 1, let (a,7) be the LASSO estimator defined by (2.4) with A =

%7”0\/%” for a constant C' and a fized constant p € (0,1). Then, with probability approaching 1 * w

have

(32) Hf— foHn < \/(6 +211)C1/ C3 + pAV/so .

Lemma 1 states that regardless of the linearity of the model, the prediction norm of the scaled

LASSO estimator defined by (2.4) converges to 0, provided that n — oo, p — oo and sgA — 0. This,
in turn, plays an important role for proving the oracle inequality in Theorem 1 for the case of linear
models and Theorem 2 for nonlinear models.

Next, we turn towards the standard assumptions in high-dimensional regression models. To this
end, define the population covariance matrix X(7) := E [X;(7)'X;(7)], M := E(X;'X;), M(7) :=
E[X;(7)'X;(7)] and N(7) := M — M(7). Then, 3(7) can be represented by a 4-block matrix, i.e.

2@):[ M M) ]

M(r) M(r)
The population uniform adaptive restricted eigenvalue is denoted by

"B X X 1/2
k(S0,¢0,S,X) = min min min (B [Xi(r) Xi(7)]7) .
T€S  JoC{l2phlJol<s0 A0 llvg i <cov/Fallv, 2 (7P

~ EM? - EM? - 2 -
1 _ x2 _ 1 Xtg _ 1 EM{ x _ 1 EMgx
at least 1 (p +Ca nlogp ) (pé3 +Ca nlogp ) (pé’s + CG nlog p ) <(pn)é7 + C nlog(pn)) ) for

some universal positive constants C - - - Cg.




or

(v E [Xi(r)' Xi(1)] 1)/

k(s0, o, S, M) = min min min
TES  JoC{l,...2p}|Jo|<s0 v lvsg lli<cov/sollvag ll2 ||7Jo||2
or / y
"B X' X;
#(80,co, M) = min min (V'E [Xi'Xi] )
JoC{1,....2p},1Jol<s0 470, [lvsg lli<cov/Sallvsg ll2 1770 l2

depending on the context.
In the literature on high-dimensional econometrics and statistics, it is common to add an adaptive
restricted eigenvalue condition. Additionally, we consider that an adaptive restricted eigenvalue is

of the same magnitude uniformly over 7 € T as follows

Assumption 2. (i) M, M(7) and N(7) are are non-singular;
(i) [Uniform Adaptive Restricted Eigenvalue Condition] For some integer so such that M (ag) <

so < p, a positive number ¢y and some set S C R, the following condition holds
(3.3) k(s0, ¢, S, X) > 0.

Assumption 2 (i) is a standard assumption in regression models. One can provide sufficient
conditions for Assumption 2 (ii) by imposing the condition that the population covariance matrix
3(7) have full rank. Hence, we are interested in property of X(7). To solve the inverse of the

population covariance matrix, we do the Gaussian elimination to get

N@T N

(8:4) BT = N M) NG

provided that M, M(7) and N(7) are non-singular. Therefore, X(7) has full rank as long as M,
M(7) and N(7) are invertible. Thus, Assumption 2 (ii) is almost automatic under non-singularity
conditions for M, M(7) and N(7).

We will show that 1X(7)'X(7) uniformly converges to X(7) under Assumption 1 in Lemma 6
in the Appendix. Thus the empirical adaptive restricted eigenvalue condition can hold under the
population eigenvalue condition imposed here, which can be seen in Lemma 7 in the Appendix.

Considering 7y is unknown, we impose that the restricted eigenvalue condition holds uniformly
over 7. Intuitively, dp # 0 is a necessary condition of identifiability of 9. If §9 = 0, we have to
assume Assumption 2 holds with S = T, the whole parameter space for 79. By contrast, it suffices to
impose the Adaptive Restricted Eigenvalue Condition holding uniformly on a neighborhood of 7y,
when &g # 0.

The Uniform Adaptive Restricted Eigenvalue Condition is crucial for us to update the boundness
in Lemma 1. Lemma 1 states that the prediction norm is bounded by a factor of sgA. This bound
is larger than what is desired for an oracle inequality. Depending on the UARE condition, the

prediction norm as well as the ¢; estimation error will be further tightened in the next section. Lee



et al. (2016) proposed a type of slope estimator that is not affected by the presence of a threshold
effect. That is to say, we can make predictions and estimate «ag even if §g = 0 does not hold.
However, we can derive oracle inequalities in terms of the prediction error and the ¢; estimation

error for unknown parameters aq separately in two cases depending on whether §o = 0 or not.

3.1 Case I. No Threshold.

First, we consider the situation where §g = 0. In this case, the true model is a linear model
Y; = X80+ U;, but we estimate it using the method defined by (2.4). Our estimated model is much
more over-parametrized than the true one, but we shall obtain relatively precise estimates for the

slope parameter vector «y.

Theorem 1. Supposed that §o = 0, let Assumptions 1-2 hold with k = k(so, i—}‘j, T,Y) forO < p < 1.
Let (@,T) be the LASSO estimator defined by (2.4) with A given by (3.1). Then for all sufficiently

large n, with probability approaching 1 > we have

2v2
e (Vez+u) van
442 C3 + p

<
T (1=K \JCF - px

Furthermore, these bounds are valid uniformly over the ly-ball

IN

HJ?— fo

& = aolly S0

AW (s0) = {ao € R? | [|Bolloo < Cro M (o) < 50,60 = 0}

It is worth noting that the bound of the prediction norm here is much smaller than in Lemma
1. Compared to Theorem 2 in Lee et al. (2016) or the oracle inequality in the literature on high-
dimensional linear models (Bickel et al. (2009), van de Geer et al. (2014) etc.), Theorem 1 delivers
results of the same magnitude. Although our model is much more overparametrized, our estimation
method can accommodate the linear model. Nonetheless, there is a variable selection problem on
dg. Our estimation method can find more nonzero coefficients than the true number. In particular,,

some 6(7T); is incorrectly estimated as nonzero. We shall discuss this in more detail in Section 7.9.

3.2 Case II. Fixed Threshold.

In this subsection, we construct oracle inequalities when §y # 0. More explicitly, the true model has

a well-identified and discontinuous threshold effect.

Assumption 3 (Identifiability under Sparsity and Discontinuity of Regression). For a given sy >
M (ap), and for any n and 7 such that n < |1 — 79| and a € {a: M(a) < so}, there exists a

-~ EM? - EM% N 2 - 2
2 1 x2 1 Xt 1 EM{ x 1 EMg x
at least 1 — [ —— —x= ) (L _ _ 1 _ _ .
»C1 + Co nlogp »Cs +Ca nlog p »Cs +Cs nlog p (pn)C7 +08n10g(zm)
EM%
120 Tog(p2n)

2
EM% x 1

! 7( e

(pZTg + C1o ion g2 Y , for some universal positive constants C --- C1a.




constant Cy > 0 such that wpal
| fear) — foHi > Oy,

Assumption 3 states identifiability of 7q. Lee et al. (2016) have already discussed in Appendix
B.1. (page. A7-A8) that Assumption 3 is valid in a random design under Assumption 1 above. As
mentioned before, we need Assumption 2 to hold uniformly in a neighborhood of 7. Lemma 9 shows
how we can get an upper bound of 7 — 7y only under Assumption 1 and 3.

Given Lemma 9 in the appendix, we define

and
S=A{lr -1l <n"},

where S can be inserted into Assumption 2. Note that we omit the restriction, 1 > min; |Q; — 7o|
which is imposed in Lee et al. (2016). The reason is that 7 > min; |@Q; — 79| never binds for sufficiently

large n. Intuitively, min; |Q; — 7| will be small enough in the random design.

Assumption 4 (Smoothness of Design). For any n > 0, there exists a constant Cs < oo such that

wpa l
(3.5) s sup |X<”X“ |1{Q: < 7o} = 1{Q: < 7} < Com,
1<4,I1<p |7—70|<n T
A
(3.6) sup  sup (ol ZUX 1@ <70}~ 1@ < 7J)| < Y7,
1<5,l<p |[T—T0|<n
(3.7 sup Z Ui X[60[1{Qi < 1o} — 1{Q; < T}]| < \/ﬁ
|T—To|<n | T

Lemme 4 demonstrates that sup;<;<, % Z?:l UiXi(j ) is bounded by A with probability approach-
ing one (wpal). Similarly, Lemma 6 shows that sup;<; <, [+ > 7, Xi(j)Xi(l)| is bounded from above
wpal. The supremum in Assumption 4 is bounded in a neighborhood of g for all 1 < j,1 < p. This
strengthening is essential to establish oracle inequalities when a threshold is present. Please note
that (3.7) almost automatically implies (3.6). Furthermore, Lemma 10 demonstrates that if a design

satisfies Assumption 1, then Assumption 4 holds.

Theorem 2. Suppose that 6o # 0, let Assumptionl to 2 hold with k = k(so, T i ,S,3) for0 < p < 1.
Furthermore, Assumptions 3 and 4 hold. Let (a,T) be the LASSO estimator deﬁned by (2.4) with X
given by (3.1).

10



Then for all sufficiently large n, with probability approaching 1 > we have

\/C? +u Ny

- 36(022 + p)
— 21— p)/CF — A

(3 L+ VG | 1) 12(C2 + p))

[, <o

& — aolly S,

IN

80>\2.

|7 — 7ol

(1= (O35 = pA) K20y
Furthermore, these bounds are valid uniformly over the ly-ball

A[ So {OZO € R2p | ||a0||oo < Cl,M (0[0) < 80,(50 75 0} .

0

The oracle inequalities in Theorem 2, disregarding constant terms, align with those in Theorem
1 concerning the prediction norm and ¢1 errors for estimates. These results hold uniformly over

B, (s0), where
By (50) = A (s0) U AL (50) = {0 € R? | [l < C, M(ag) < s0}-

For the super-consistency result of 7, Lee et al. (2016) argued that the least squares objective
function behaving locally linearly around the true threshold parameter value is the key to achieving
the super-consistency for the threshold parameter.

The main contribution of this section is that we have extended the oracle inequality to non-
sub-Gaussian random regressors with non-sub-Gaussian errors for both the prediction norm and ¢

errors for estimates.

4 The Desparsified LASSO

Now, we turn to the construction of confidence bands for the elements of ag, ensuring uniform
validity over all oy within certain fy-balls. To achieve this, we introduce the desparsified LASSO
estimator, which is employed in the construction of tests and confidence intervals. Specifically, we

consider the following form of the desparsified LASSO estimator:

(4.1) a(7) = a(7) + (X' (7) (Y — X(P)a(r))/n,

where @&(7) and 7 is defined in (2.4), ©(7) is an approximate inverse of the Gram matrix i(?) =

X'(7)X(7)/n. The reason that we calculate an approximate inverse of the Gram matrix to be used

5 EM3. s BM3 ~ EM? ~  EMP?
3 [ x2 ) _ ([ Lo Xto )} _ (L. Uux | _ 1 UX _
at least 1 (pél +C2 nlogp> (p +Cy nlogp ) <pés +Ce nlog p (pn)07 +Cs nlog(pn)
1 5 EM% )\ 1 5~  EM%x . o 2 =
(pzég + C1o ot e + Ci2 Tlog(p2n) ) * for some universal positive constants C1 - - - C12.
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is that when p > 7n,*, an inverse of the Gram matrix i(?) is not feasible. 3(7) is of reduced

rank provided that p > 7n. Thus, the idea is to construct an approximate inverse, (:j(f'), to 2(?)
and control the error term resulting from this approximation. Our construction of this approximate
inverse relies on nodewise regression of Yuan (2010), which will be introduced in the next subsection.

We now derive the error decomposition of the estimator in (4.1), which provides intuitions on
the construction of @(?)

By the minimizing property of a(7), it follows the first-order condition of (2.6):
(4.2) -X@)'(Y —= X(T)a(7))/n+ AD(7T)p =0,

where p is a 2p by 1 vector, arising from the subdifferential of ||@(7)||1. ||fllc < 1 and p; =

sign(@V) (7)) if aU)(7) # 0, where ”sign()” is the function that maps positive entries to 1 and

negative entries to -1. So (4.1) can be rewritten as

(4.3) a(7) = &(7) + AO(7)D(7)p

4.1 Bias Correction Case I. No Threshold

We first consider the case where dg = 0. Then, the true model is simply a linear model Y; = X/ 8o +U;.
Inserting Y = X 5y + U into (4.2) yields

(4.4) AD(7)p + X (7)(X(7)a(7) — X Bo)/n =X'(7)U/n.

Note that dp = 0 implies X (7)dp = 0 for any 7 € T, since T is an overparameterized term, we
can add X (7)dg into (4.4) anywhere to obtain

(4.5) AD(7)j + X(7) (X(7)a(7) — X(F)an)/n = X' (7)U/n,
The expression with one more step:
(4.6) AD(7)p + £(7)(@(7) — ap) = X'(F)U/n.
Thus, we have
a(?) = &(7) + )\(:)(?ED(?)[’) i
— &(7) — O(F)E(F)(@(7) — ag) + OF) X (A)U/n

(4.7) o ~
=g — ao + &(7) — O(T)X(7)(a(T) — ao) + O(F)X'(7)U/n

— ag + OFX'(F)U/n — A7) /n'/?,

4Given that 7y is unknown, we must construct the approximate inverse é(T) when 7 -n < p. In a more stringent
assumption, if min{to,¢1,1 —to,1 —t1} - n < p, we construct the approximate inverse ©(7).
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where
A7) = Vn(O(7)3(7) — Inp) (&(7) — ).

In order to derive the asymptotic distribution of tests involving an increasing number of param-
eters, we define a (2p x 1) vector g with ||g|l =1 and let H =j =1,---2p | g; # 0 with cardinality
|H| = h < p. H contains the indices of the coefficients involved. This implies ||g|; < vk by
the Cauchy—Schwarz inequality. In particular, g = e; is the case where we only consider a single
coefficient, where e; is the j-th 2p x 1 unit vector.

Considering

(4.8) Ving'(a(7) — ao) = ¢'O()X'(F)U/n'/? — ¢ A7),

a central limit theorem for ¢’ @(?)X' (7)U/n'/? and a verification of the asymptotic negligibility of

g’ A(7) will achieve the desired convergence and yield asymptotically Gaussian inference.

4.2 Bias Correction Case II. Fixed Threshold.

This subsection explores the case where the threshold effect is well identified and discontinuous.
Following a similar derivation in Section 4.1, this time we insert Y = X(79)ag + U into (4.2). This

yields:

(4.9) AD(7)p + S(F)a(7) — X' (7)X(70)ao/n = X' (F)U/n.
substituting (4.9) into (4.3) yields:

(7) = ag + O(F)X'(7) (X(70)a — X(7)ao) /n

(4.10) ) (m )
—O(M)AD(7)p + O(F)X'(T)U/n — A(T) /n'/.

In order to derive the asymptotic distribution of tests involving an increasing number of pa-
rameters, we define a (2p x 1) vector g with ||g|lo = 1 and let H = {j = 1,---2p | g; # 0} with
cardinality |H| = h < p. H contains the indices of the coefficients involved. This implies ||g||; < VA
by Cauchy-Schwarz inequality. In particular, g = e; is the case where we only consider a single
coefficient, where e; is the j-th 2p x 1 unit vector.

Considering

(4.11)
Vg (a(#) — ag) = g'O(70) X (10)U/ /n'/? — g' A(7)
+g (01X (F)U = O(70)X/ (10)U) /n'/? + g O(7)(X(#) X (70) — X/ (#)X(#))axg /n' /2,

a central limit theorem for ¢’ (:)(TO)X' (10)U//n'/? and a verification of asymptotic negligibility of
g (OF)X'(#)U - O(10)X'(0)U)//n'/?, ¢’ A(+) and ¢'O(7)(X/(#)X(10) — X/ (#)X(7))arg/n/? will
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achieve the desired convergence and yield asymptotically Gaussian inference.

4.3 Constructing the Approximate Inverse (:)(T)

In this section, we formalize the approximate inverse @(T) utilized in our threshold model. The
approach closely follows that of van de Geer et al. (2014), with the additional requirement of verifying
that our specified conditions are met.

For the purpose discussed in the context of (4.11), we seek a well-behaved ©(7) and examine the
asymptotic properties of (:)(T) uniformly across 7 € T. To achieve this, we establish a connection
between O(7) and O(7), where O(7) := X(7)~! is defined in (3.4) as

syt | N N
“N() M)+ N

Define M(7) = Ly Xi/X:1{Q; < 7} and N(r) = L " | Xi/X;1{Q; > 7}. We construct the
approximate inverse ©(7) because p > Tn.To be precise, the threshold variable Q; is used to split
the sample into two groups. As long as either sample covariance matrix ﬁ(T) or N(T) is of reduced
rank, we have to construct their respective approximate inverses.

Then we construct approximate inverse A(7) of ﬁ(T) and B(7) of N(7) and we relate A(7) to
A(7) := M(7)~! and B(7) to B(r) := N()~L.

Let X(=7)(7) denote all columns of X(7) except for the j-th one and let X()(7) denote the
(n x 1) vector such that ij)(T) = Xi(j)l{Qi > 7}. Then, X(=9)(7) denotes a (n x (p — 1)) matrix
except for the j-th column of X (7). Along Section 2.1 of Yuan (2010) we can rewrite the following

regression models with covariates orthogonal in Lo to the error terms for all j =1---p,
X0 (1) = XY 50,5(7) + 09,
RO (1) = XD () 50,4(7) + 89,

The details of the covariance matrix’s representation of the regression coefficients are given in Ap-
pendix B of Caner and Kock (2018). v() and ©) are not a function of 7 due to the independence
of Q.

We put forward the following assumptions:

Assumption 5. (i) For the parameter space maxi<j<p ||V;llooc < C , for some constant C' > 0;
(iz')E(vZ(j)|X¢,Q¢) =0 and E[(Ul(j))Q] is uniformly bounded over j =1,---p; E(ﬁgj)\Xi,Qi) =0 and
E[(GEJ))Z] is uniformly bounded over j =1,---p;

/ 2 /To .
(7'”) W < 0o, where M, x = maxi<;<p Maxi<i<p ‘Ui(])Xi(l)|'
Assumption 5 controls the tail distribution of \UZ-(j)Xi(l)| and |17Z(j)Xi(l)|, in order to apply the

oracle inequality proved in previous work.
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Given any 7 € T, the LASSO nodewise regression for ;&(T) is defined as follows:
(4.12) () = argming et [ X9 (7) = XCD (011} + Anode| T ()1

where

~

Li(r) = diag{HX(l)(T)Hn,l =1,..,p 1 # j} ,

with components of 7;(1) = {’ij(k)(T); k=1,..,p, k # j}. The (2p x 2p) diagonal weighting
matrix is denoted as follows: It is noteworthy that we choose A to be the same in all of the nodewise

regressions. The nodewise LASSO runs p times as an intermediate step to construct 11(7') Let

1 5@ P (r)
~ (1) -~ (p)
~ —%2 7 (7) 1 e =2 (T)
(4.13) C(r) =
-5 =3P - 1

Then, model (4.12) will be sparse with v;(7) possessing s;(7) non-zero entries. To define A(7) we

introduce a p x p diagonal matrix Z(7)? = diag(#1(7)?,--- , Z,(7)?), where
(4.14) Z(1)? = |IXD (1) = XD ()35 (1) 17 + Maoae IT5 (175 (T 1,

for all j = 1,...,p. Hence, we may define

(4.15) A1) = Z(r)2C (7).

It remains to be shown that this A(r) is close to the inverse of ﬁ(r) We define A;(7) as the j’th
row of A(7). Thus, Aj(t) = Cj(1)/%;(7)?. Denoting by ¢; the j'th p x 1 unit vector, the KKT

conditions also imply that

(4.16) 14, () ¥E(r) = 2o < 225,

Parallel to construction of 1/3;(7) above, we define

(4.17) B(r) = Z(r)2C ().

We define
(4.18) (r); = argmin, gy | X9 (1) = XD (1) 7|12 + Mode |E5 ()1
where

Ty(r) = diag{HX(l)(T)Hn,l —1,pl j},
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with components of%(r)j = {'?j(k)(r); k=1,...p, k # j}. Denote by Z(7)? = diag(Z ()2, - - ,2p(7)?)

which is a p x p diagonal matrix with

o~ ~

(4.19) 5 = 11XD(x) = XD (YA 13 + Mo IT5 (T 1,

forall j =1,....,p. We let

= = (p)
L () ~7 ()
= (1) = (p)
= — T 1 — T
(4.20) O(r) = Yo (T) 2 (7)
~) ~ @)
7 () =% (7) 1
We also get the following inequality:
4.21 B(r)'N & | < node
(4.21) [B(T);N(7) = €jlloe < =—
Z(7)
Thus
n Br) B
(4.22) &) =| BT -BO)
-B(r) A(r)+B(7)
Denoting by e; the j'th 2p x 1 unit vector,
N /I / )\node )\node
(4.23) maxsup [|[@(7);3(7) — €jlloc £ max sup =< + sup .

. . a g T max =
JEH T jE€EHorj+pEH LT Zj (7‘) jE€Horj+peH L Z; (7—)2

(Formal proof is given in the Appendix. )

Hence, we get the error term resulting from this approximation, i.e. the upper bound on the
maximal absolute entry of the j'th row of ©(7)'S(r) — I,,. This provides the sufficient conditions
to show that ¢’A(7) in (4.11) is asymptotically negligible.

Define § = sup, cr max;cq s;(7), where s;(1) = |5;(7)|, andS;(7) = {©,:(1) # 0}.

We then have the following result.
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Lemma 2. Let Assumptions 1-5 be satisfied and set \joge = % 10%. Then,
~ _ [logp

(4.24) M sup 1©(7); = ©(7),l1 = Op (S . )
~ 51

(4.25) wasuPG(ﬂj—-CKTMz==0p< Sogp>

JEH reT n

(4.26) max sup ||(:)(7')]H1 =0, <\/§)

JEH reT

~ BN logp
(4.27) Masx sup 1©(7);%(7) — €flloc = Op (\/ . )

4.4 Inference

In this section, we derive asymptotic normality under high-level conditions which allows us to es-
tablish joint inference on a linear combination of the entries of the desparsified LASSO a(7).
To this end, we define

Baul?) = 1+ X)Xl Gl

=1

'E X ()X 1/2
k(s0,¢0, T, X) = max max max (V' E[X;(1)X;(1)]7) 7

T€T  JoC{1,...,2p},|Jo|<s0 77&07”"”8HlSCO\/%H’YJoﬂz ||7J0||2

and
r1 / 1/2
= & X(7)'X(7
7(s0, c0, T, %) = max max max (v £X(7)X (7))
€T JoC{l,....2p}Jol<so  v#0,llvsglli<cov/sollvsgll2 ||’YJO||2

The following assumptions are imposed to establish a limiting distribution for an increasing number

of coefficients.

Assumption 6. (i) maxi<j<, E [(Xi(j))u] and E [Uf] are bounded away from infinity uniformly

m n.

+/EM?2 ;\/logp EM? Vlog p JEM? Viog p

Xi\/%gp =0,(1), % =0,(1) and X4+gp = 0,(1), where

Mys = max max [(XPxPx9)? - p(xPxPx9,
1<i<n 1<k,l,j<p
Mx2p> = max max | XU xPu? - ExY xPu?,
1<i<n 1<5,1<p

and

Myipz = max max |(XPxP0)? - EXPxOU)?).
1<i<n 1<5,I<p

(i)
(252282 _ (1),

vn
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(iii) L5 = 0,(1);

n2

k(8,c0, T, X)) and k(3,co, T,X) are bounded away from zero;

R(8,c0, T, X0) and K(8,co, T, X) are bounded from above.

Assumption 6 gives sufficient conditions for a central limit theorem result. Assumption 6 (i) con-
trols the tail behavior of the covariates and the error terms. By Assumption 6(i), maxi<; <, var (Xi(j)Xi(l) U?),

(*)
max <y, 1,j<p var(X;

i Xi(l)Xi(j))2 and maxi<ji<p var(Xi(j)Xi(l)Ui)2 are bounded away from infinity

uniformly in n.

Assumption 6(ii) limits the dimension of the models, the dimension involved in conducting joint
inference, the sparsity of the population covariance matrix, and the sparsity of the slope parameter
vector.

The first part of Assumption 6 (iii) is designed to verify the Lyapunov condition. Then the other
part restricts the eigenvalues of 3., (7) and X(7).

Hence, we have the following result.

Theorem 3. Let Assumptions 1, 2, 3, 4, 5 and 6 be satisfied and let g be 2p x 1 vector satisfying
llglla = 1. Then,

(4.28) \/Aﬁg/(ffﬁ)_fo) 4 N(0,1).
VIOHD(7)..0()g

Furthermore,

(4.29) sup  19'0(F)E0u(7)O (7)g — ¢'O(7)Z0u (7)) (F)g| = 0,(1)

g EA;;) (s0)

(4.30) sup  sup |g'O(F)S,u(F)O' (F)g — 9'0(10)Z0u(10)©' (10)g| = 0,(1)
aoGAéi)(So) T0€T
where
AP (50) = {a0 € R¥ | ||ag|loo < €, M(ap) < 50,8 =0},
and

AP (s0) = {ag € R? | f|ag|loe < C, M(ag) < 50,00 # 0} .

When conducting testing, we lack prior knowledge of the presence of a threshold. Consequently,
in Theorem 3, we need to simultaneously impose the assumptions of Theorems 1 and 2. The first
part of Theorem 3 implies convergence to the normal distribution of a sub-vector of a(7) of increasing
dimension uniformly over By, (so). The number of parameters involved in hypotheses is allowed to
grow to infinity at a rate restricted by the above Assumption 6(ii).

The second part shows that we propose a consistent estimator of the covariance matrix uniformly
over By, (sp). The uniformity of (4.29) and (4.30) will also be used in the proof of uniform convergence

below.
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In the case where H is a set of fixed cardinality h, (4.28) implies that

(4.31) 1(98()S(3)®()g) ™ Vg (@(7) — ao)ll§ 4 x3(h),

correspondingly [|g]l2 =1 and H = {j = 1,---2p | g; # 0}. Thus, x? test can be conducted with a
hypothesis on i parameters simultaneously.

We now establish confidence intervals for our parameters. We refer to the proof of Theorem 3 in
Caner and Kock (2018) and its details therefore are omitted.

Let @(t) denote the cumulative distribution function (CDF) of the standard normal distribu-

tion and zi_«

o is the 1 — § percentile of the standard normal distribution. Denote by o(7); =

~

\/e;(:)(%)i(%)w@(?)’ej for all j € {1,---2p}. Let diam([a, b]) map the length of the interval[a, b] C
R.

Hence we have the following results:

Theorem 4. Let Assumptions 1, 2, 3, 4, 5 and 0 be satisfied and let g be 2p x 1 wvector satisfying
llgllz2 = 1. Then,

A=) —
(4.32) sup  sup |P \/Aﬁg (?(T) fO)
teER ap€Ag (s0) \/g/@(?)z(?)zug(?)lg

Furthermore, for all j € {1,---2p},

; ; () ~(J) (=) _ N a(7); ~(F) (= N a(7); —1_
(4.33) nILH;anelzsI}gf(so)P{ao € {a (7) zl_fi\/ﬁ ,a(T) +21-9 T 1-a.
Finally,
N PR ()i ~G)(~ o(7); 1
(434 aoeséii)(so)dwm([a(])(r)Zl‘g YRR S sl ety i)
where

Bey (s0) = Afy (s0) U AR (s0) = {a0 € B [ [|ao ]l < €, M(ao) < 50}

(4.32) implies that the convergence to the standard normal distribution is actually valid uniformly

over the £y-ball of radius at most sg.

5 Monte Carlo Simulation

In this section, we explore the finite sample properties of the proposed desparsified LASSO proce-
dures for threshold regression through Monte Carlo experiments. To establish a benchmark for the
desparsified LASSO in threshold regression, we also implement the desparsified LASSO for linear

regression as introduced by van de Geer et al. (2014). Before delving into the results, we provide
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an explanation of how the data was generated and the performance measures used for comparing
the desparsified LASSO for the threshold model with the desparsified LASSO method proposed by
van de Geer et al. (2014).

5.1 Implementation details

The implementation of the desparsified LASSO for linear model is inspired by the publicly available
code at https://web.stanford.edu/~montanar/ssLASS0/code.html. We also modify the code of
Callot et al. (2017) at https://github.com/lcallot/ttlas to the desparsified LASSO for threshold
model. To choose the tuning parameters A,,qe, we employ the Generalized Information Criterion
proposed by Fan and Tang (2013) (GIC). We utilize GIC and ten-fold cross-validation to select
the tuning parameters A\. However, according to our simulation results, cross-validation does not
significantly enhance the quality of the results, while the processing time is considerably longer.
Hence, we select both A\ and A4, based on GIC.

5.2 Performance measures

We focus successively on several dimensions: the number of observations, the quantity of covariates,
and the correlation between the threshold variable and the covariates.

Both covariates and error terms are assumed to follow a t-distribution with 10 degrees of freedom.
Specifically, each covariate is generated as Xi(j )~ t(10) for each j € 1,--- ,p, and the error term
U; ~ t(10) is independent of the covariates. When the threshold variable @Q; is independent of
X, Q; ~ uniform(0,1). In the case where the threshold variable Q); is correlated with X; with
a correlation coefficient p, we generate two uniform(0,1) distributions, @Q1; and Qs;, and Q; =
pQ1; + (1 — p)Q24; then, we replace the second column of X; with Qz;. We set the threshold
parameter 75 = 0.5 to prevent either of the split samples from being unbalanced. Neither the
intercept nor the thresholded intercept is involved in the design to simplify the test. Without loss
of generality, we assume [y is p X 1 with s9/2 ones and p — sg/2 zeros and the sparsity of Sy and dg
are identical. So the total number of nonzero parameters are sg

All tests are conducted at a 5% significance level, and all confidence intervals are set at the 95%
level. The x2-test involves the first non-zero parameter and the first zero parameter in Sy and d
for threshold regression. For linear regression, the x2-test involves the first non-zero parameter and
the first zero parameter in fj.

The performance of our desparsified LASSO for threshold regression and the desparsified LASSO
of van de Geer et al. (2014) is evaluated based on the following statistics, averaged across iterations.

1. Size: We evaluate the size of the y2-test in (4.31) for a hypothesis involving more than one
parameter. The null hypothesis is always that the coefficients equal the true value.

2. Power: We evaluate the size of the x2-test in (4.31) for a hypothesis involving more than one

5(()80/ 2 oquals its assigned value

parameter. To measure the power of the test, we test whether
plus 1. The difference in alternatives is merely to obtain non-trivial power comparisons (i.e. to avoid

either the power of all tests being (very close to) zero or (very close to) one).
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3. Coverage Rate: We compute the coverage rate of a Gaussian confidence interval constructed
as in (4.34) in Theorem 4. All results related to the desparsified LASSO for threshold regression
are conducted for the coefficients corresponding to the first nonzero entry and first zero entry of
Bo (ie., ﬁél),ﬁéso/%l) ) and the first nonzero entry and first zero entry of dg (i.e., (5(()1), 5(()80/2+1) ).
All results related to the desparsified LASSO for linear regression are conducted for the coefficients
corresponding to the first nonzero entry and first zero entry of 3y (i.e., (()1), (()SO/QH) ).

For assessing the size of the x?-test using the desparsified LASSO for threshold regression, we
evaluate the true hypothesis Hy : ( 61)76650/2“)75(()1),5(()50/2“)) = (1,0,1,0). Due to an incorrect
model specification, the x2-test for the desparsified LASSO for linear regression focuses on the first

nonzero entry and first zero entry of Sy i.e., Hy : (6(()1), éS°/2+1)) = (1,0).

(()1)7B(()80/2+1),5(()1),5(()80/2+1)) _

To evaluate the power of the x2-test, we examine the false hypothesis Hy : (
(1,0,1,1) for the desparsified LASSO for threshold regression. For the desparsified LASSO for linear
regression, we test the false hypothesis Hy : (B(()l), 5(()50/2“)) =(1,1).

We construct confidence intervals for ( (()1), ((]30/ 2+1), 551), 5530/ 2+1)) for the desparsified LASSO
for threshold regression or ( (()1), ,B(()SO/ 2+1)) for the desparsified LASSO for linear regression.

The number of Monte Carlo replications for each design is consistently set to 200.

5.3 Design 1

In this design, we investigate the effect of using a threshold variable that is part of the set of
covariates (Q € X), or that is correlated with the covariate. To be more precise, let X (2) denote
the second column of X, and pg x) be the correlation between @ and X (2). We consider the case

where @ is independent of X, @ = X as well as pg_y = 0.9.

5.4 Design 2

This design is to increase the number of observations or the number of variables to investigate the
asymptotic properties of our procedure. We take sg = 10, which is a very sparse setting to satisfy
assumptions on sg with relatively large n and p.

The following combinations of n and p are considered:

(n,p) € {(500,100), (500, 250), (500, 400), (100, 250), (300, 250)}

5.5 Results of simulations

In this section, we present the results of a series of simulation experiments assessing the finite sample
properties of the desparsified LASSO for threshold regression.

Table 1 indicates that whether the threshold variable is included in the set of covariates or
correlated with one of the covariates has almost no impact on the performance of our desparsified
Lasso Estimator for the high-dimensional threshold model. The size and power of the y2-test are

very close to the nominal significance level with the desparsified LASSO for the threshold model.
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Notably, it is not surprising that the size and power of the x2-test exhibit substantial distortion
with the desparsified LASSO for the linear model. All numbers concerning confidence bands are
reasonable with the desparsified LASSO for the threshold model but are slightly over-covered. The
desparsified Lasso Estimator for the linear model procedure does exhibit an undercover coverage
rate of nonzero parameters, but for zero parameters, it has a tendency to overcover.

Table 2 indicates that the desparsified LASSO for the high-dimensional threshold model con-
sistently exhibits less size distortion while having slightly more power as n increases in a high-
dimensional setting. The size and power approach nominal levels as n is increased. All numbers
concerning coverage rates are reasonable with the desparsified LASSO for the threshold model. The
desparsified LASSO for the threshold model procedure always has coverages that gradually improve
as the sample size is increased. However, nonzero coverage rates are close to 1, indicating a tendency
to overcover.

Table 3 illustrates that the desparsified LASSO for the threshold model procedure continues
to perform well in terms of size, power, and the confidence intervals even as experiments become
progressively more challenging, with the choice of p > n and the models naturally becoming high
dimensional. However, nonzero coverage rates are close to 1, indicating a tendency to overcover.

In general, the desparsified LASSO for threshold regression performs much better in terms of
size, power, and coverage rate compared to the desparsified LASSO for the linear model proposed

by van de Geer et al. (2014) when threshold effects are present.

6 Conclusion

In this paper, we introduce a desparsified LASSO estimation procedure designed for high-dimensional
threshold models. We propose a method for constructing uniformly valid confidence bands in the
context of the nonlinear regime-switch model. Notably, our study adopts less restrictive assump-
tions compared to existing research on high-dimensional threshold models, removing the assumption
of sub-Gaussian error terms and covariates. Future research directions could include extending the
desparsified LASSO methodology to dynamic panels with threshold effects and expanding the frame-
work to accommodate models with multiple thresholds.
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7 Appendix

7.1 Tables

Table 1: Summary statistics for Design 1: the dependence between the threshold variable and the
covariates

2

b% coverage rate
n=>500, p=250
size  power non-zero Z€ero

B 0 B ]

DLTH 0.03 093 099 098 1.00 1.00

@Q is independent of X'y e en 0.27 1.00

oo DLTH 0.05 086 095 098 1.00 1.00
PQ.x@ = U DL 049 0.50 0.23 1.00

DLTH 0.04 091 097 098 1.00 1.00
DL 0.44 0.46 0.21 1.00

Table 2: Summary statistics for Design 2: the number of observations

X2 coverage rate

p=250, Q = X®@

size power non-zero Zero

8 4] B o

DLTH 0.12 0.19 090 0.77 1.00 1.00

=100 “pro 003 096 0.96 1.00
300 DLTH 009 072 093 094 100 100
= DL 021 0.34 0.78 1.00
DLTH 0.04 091 097 098 1.00 1.00
n=>500

DL 0.44 0.46 0.21 1.00
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Table 3: Summary statistics for Design 2: the number of variables

X2 coverage rate

n=>500, Q = X®

size power non-zero Zero

B 4] B o

DLTH 0.056 097 095 095 1.00 1.00

p=100" "nr 075 065 0.08 1.00
o5y DLTH 004 091 097 098 100 100
p= DL 0.44 0.46 0.21 1.00

DLTH 0.02 092 099 097 1.00 1.00
p=400

DL 0.34 0.44 0.41 1.00

7.2 Proofs for Section 3

In this section of the appendix, firstly we prove the oracle inequality of prediction error. Let the

event

Ay = { max 1 Z(Xi(j))Q <C3 +/L)\}

n

1 .
Ag = { min — 3 (X7 (t))* > CF - m} 7
In particular

NN 2
Aot ( min X > ("
{Aq} C {1<j1<pn ‘§1( )72 O3 — pA

The following lemma provides lower bounds on the probabilities of upper bounds of second moment

of regressors. B.

Lemma 3 (Probability of A; and Asy). Let Assumption 1 be satisfied and set X by (3.1). Then

1 ~ EM)Q(Z log p

PlA1} >1— | — +Co——T——
{A1} o o2

1 ~ EM?HO log p

P{Ag}>1— [ —+C—n —

pCs 4 (log p)?
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Proof of Lemma 3. Consider the term ||X ||2 =1 Z;L:I(Xi(j))z. Lemma E.2(ii) of Chernozhukov
et al. (2017) provides (set n =1 and s = 2 in their Lemma):

P{ max |- i(Xf”)? — B[(XP)?) > 2E | max |~ Z(X“)) ~ E[(X)

1<j<p n — 1<j<p n -
t2 - EM?
(7.1)  <exp{- o) 1+ C QXZ , set t = (nlogp)'/?, then we have
3nmaxi<;<, Var[(X;”)?] t
- EM?
SL + 00—
pC¢ nlogp

for a positive constant, C' > 0. With Assumption 1, Lemma E.1 of Chernozhukov et al. (2017)

provides, with C' > 0 a positive constant,

Bl(x9) 1|] < O[LSEL VI 8D o flsn)

(72)  F | max \fZ(Xi(j))Q

1<j<p n —

Let ¢ = argmax, <<, (2 S0 (X)) — E[(x)?))

2 (5 SO = CF) = o (007 - B2
(7.3) — max é(x,fj’)z — B[(X))
< max | i(xi(”)? — B[]
Combine (7.1) with (7.2),
(7.4)
P max | i;(Xf”f - Bl 2 20 L2 + i e R < +oihe

To get the first part of the lemma, we combine the above display with Assumption 1 (ii), (3.1) and
(7.3)

ey _ 1 G2 2 Vlogp
P{Al}_P{gl%nz(X 2-ci>cC 7

(7.5)

g]P’{ max |—Zn:(Xi(j))2—E[(Xi(j)) ]| > c“jg } <1 +C*EM)2” = 0,(1)

1<j<p n = - pC nlogp

Therefore we have proved the first part of the lemma.
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Next, consider As. ||(Xi(j)(t0))2|\% = %Z?:l((Xi(j)(to))Q)z. Lemma E.2(ii) of Chernozhukov
et al. (2017) provides (set n =1 and s = 2 in their Lemma):

(7.6)
L, () 2 () s 112 L, () gy 12 )y 12 t
- ( _ ( > - ( _ ( e
P{fgj&gplng(}(z (to))? — E[(X;”(t0))?]] = 2E gﬁgﬂn;(ﬁ (t0))* = BI(XG" (t0)°]l| +
2 - EM?
<exp{-— @ } 4+ C—X Set t = (nlogp)'/? then we have
3nmaxi<j<p, Var((X;” (to))?] ¢
. EM?2
<L et
pC nlogp

for a positive constant, C' > 0. With Assumption 1, Lemma E.1 of Chernozhukov et al. (2017)

provides, with C' > 0 a positive constant,

n . ‘ - JTozp EM2t010 o
(717) B 2?;‘;,%2()(5%0»2—E[(Xf”(to)ﬂl =l i/§p+¢7 gp]:Op(ﬁ>

Let ¢ = argmin, <<, (E[(X" (t0))2) — L 320 (X7 (t))?)

03— min — 3 (X (1)) < min (B[(X[(t0))?] - % > (X7 (t0))?)
(7.9 = win (B[ 1)) - + > (X9 1))

i=1
Combine (7.6) with (7.7),
(7.9)
n EMZ, lo 2
1 () (4 ))2 G) (5 2 = V1ogp Xto 98P \/logp 1 . EMZ,
P S (xV —- B[(xV > 2 < — 40—
max |3 (X7 (t0))” = BI(X:7 (10)))) 2 2002~ + - vl e e

i=1

To get the probability of event A, we combine the above display with Assumption 1 (ii) , (3.1) and
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(7.8)

_ 2 _ - - (4) 2 Vlog
P{AS }—P{cg min Zloa (to)* > O }
1 & ; ; Vviogp
7.10 < - (@) 2 _ ©) 2] >
(7.10) _P{lrgfgpln > (X)) = BIX )] 2 0¥ 72
1 . EM%,

<—+C 0 =o0,(1

“pC + nlogp p(1)
Therefore we have proved the lemma. O

Define the events

o 1 (@) o HA
AS'_{KMHXU)H PN 2}’

1 1< ; A
Ay = { max supiﬁ ZUZ‘XZ-(j)l{Qi <7} < 'L;},
n =1

1<5<p reT ||X 7)

Next we provide a lower bound on the probabilities of A; N Ay with a suitable choice of A.

Lemma 4 (Probability of A3NAy). Conditional on the eventshi NAg, let Assumption 1 be satisfied
and set A by (3.1). Then

1 - EM? 1 - EM?
P{AsNA}>1——=+C UX)< — + C, UX).
{As 4 (p Cs 6(nlogjo) (pn)C7 8(nlogpn)

Proof of Lemma 4. With Assumption 1, Lemma E.1 of Chernozhukov et al. (2017) yields, with
C > 0 a positive constant,

t

n

max FZUX“ U:X9)|| +

1<j<p n

{ max |— ZUXU) U:xY)| > 2E

1<j<p n

£ - EM?
p+C t2UX’ set t = (n 1ng)1/2,then we have

3nmaxi<;<p, Var[U;X,”]

1 ~EM;}

<—=+C I = 0,(1)
pC nlogp

Lemma E.2(ii) of Chernozhukov et al. (2017) provides (set n = 1 and s = 2 in their Lemma) with

C>0a positive constant,

~ v/logp \/ 1 /1
(712) max |7ZUX(J) UX( H < O[ Og UX ng Op( ﬁ)
1<j<p n \/ﬁ n
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Using that we are on the set on Aq,
(7.13)

N 1 1, ) 1 1 X ()
1252y ||X(J)|| ZUX 1<;a§pn;U1X" = C2 — pA félfgpn;Uin

mm1<J<z) X,

Combine (7.11) with (7.12),

Viogp  (EMZ)Y?logp, +/logp 1 ~ EM?
P - X(]) > 9 Ux < = Ux _ 1
{gjafpan | ‘l Vvn + n I+ N _pC+Cnlogp o(1)
Then,
MC Vdiogp
P{AS} =P Ux9 >
3 { 2 HX(J)H Z vn
SIP’{maxZUX(J)> log p }
1<j<pn
oVlogp
< —
_P{lrgjaé(pn ZUX n +0,(1)
EM2
_pé CoX 1 0,(1) = 0,(1)
This shows also that
Vlogp
7.14 UXx9P| =
(7.14) 2, HXJ>|| Z )

Next, consider the event A4. To show the sup norm over 7, we adapt the proof of equitation (A.1)
and (A.2) in Lemma A.1 of Callot et al. (2017) to our purpose. Conditional on Ay, then sort
{X:,U;, Qi }—y by (Q1,- - Qy) in ascending order, for j =1,---p,

(J)
P{g}gpi‘ég ||X J) ZUX iz t}

ma xsukaUXj) |>t}

mln1<]<p HXU) to)H 1<j<preT N
Y

1<j<p1<k<n n <j<p

+ XJ)> 2
Efiplzl,?zn‘nZU SR G

<P

]P’{ max max \—ZUXJ)| > t min HX(]) (to)
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Denote a deterministic upper triangular matrix with all ones

1 1 1
(715) En,n = . . . . )
0 0 1

and let Ei(k) is the i-th row, k-th column element of Z,, ,,, then

k n
max max |ZU¢X1.(J)| = max max |Z U,;Xi(j)flgk”
i=1

1<j<p1<k<n “ 7 1<j<p1<k<n
1=

UiXi(j )fgk) is independent centered random variable(not identical),

k n

j i) (K
max max | g UiXZ-(J)| = max max | g Uixi(”gg )|
1<j<p1<k<n 7 1<j<p1<k<n “ -

1= 1=

max; < <p maxi<p<n S0, Var[U; XPeM]
n

U; X i(j )@(k) is independent centered random variable(not identical),

max; < <p maxi<hen Dby VarlUiX]  maxic;<, S, VarUiX (7]
n - n

) o (k . - . .
maxi<j<p MaXi<i<k<n |U,»Xi(J)§§ )\ < Myx. So under assumption 1, conditions for maximal in-

= maxi<;<p Var[UiXi(j)] < oo and

equalities are stratified automatically. Lemma E.2(ii) of Chernozhukov et al. (2017) provides (set

n=1and s =2 in their Lemma) with C > 0 a positive constant,

(7.16)
) g(6) ) e (8)
x W) e(R)) X Mgl
o S0 228 s 135006 1)
t? ~ EM?
<exp{-— 1+ C tzUX’ set t = (nlogpn)/? then we have

3max; <j<p maxi<pen S, Var[U; X e
o1 (i‘EA45X
~ (pn)© (nlogpn)

With Assumption 1, Lemma E.1 of Chernozhukov et al. (2017) yields, with C > 0 a positive constant,

E

() (R
o, e 3 U

n

Nl ;
(7.17) <.| max max Var[UiXZ-(J)fi(k)]\/logpn—l—\/EM[ijlogpn

1<j<p1<k<n 4
=1

<Cv/nlog(pn) + \/ EMZ  log pn = O,(y/nlog(pn))
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Combine (7.16) with (7.17) and we consider p > n,

P<{ max max |—
1<j<pl1<k<n N

Viogp \/ 1 \/
S]P’{ max max |fZUX(j)§(k)| > 20 \;)g My ng ng}

Z U X\ J)g(k)| > 20 \/log pn \/EMUX ]‘Og pn V log(pn
vn vn

1<j<p1<k<n T Vn

1 - EM?
< -+ C Ux__
(pn)€ (nlog(pn))

Taking expectations over (Q1,- - Q) and set A by (3.1) yields,

1 G MC’ Vdiogp
P{AS} =P ax su UXJ1 i< TH>
{ 4} {1I£lj<p Eg ||X .7) n Z {Q } \/>
1 ; Vviogp
7.18 < 2 x9D110. S HC [oo
( ) <P {fgj&;{p ilé% - ; U: X, H{Q: <1} > 5 C3 — puA Tn
1 ~ EM?
< -+ C Ux_ — op(1)
(pn)€ (nlogpn)
This shows that
1 IR, _ 5 Vogp
(7.19) B2 S T ) nE;Uin HQi <7} = 0p(=725)

Since P{Az N A4} > 1 —P{A§} — P{A§}, we have proved the lemma.
Define Jy := J(ayp), D= f)(f'), D =D(7) and R, := R, (ag, 7o), where
Ru(a,7) :=2n"" Z U X[6{1(Q:; <7) —1(Q; < 7)}.
i=1
Lemma 5. Conditional on the events A1, Ao, As and A4, for 0 < u < 1 we have

r20) | F-sf + 5 foll?

(1= A [ D@ - ao)|| < 2A||D(@ ~ a0)s,
1

Proof of Lemma 5. We begin by noting that (2.4)

(7.21) S+ A Hf)aH1 < Sn(a, 7) + AD(7)e

2 S Sula,7) < AID(7)all, — A||Ba|
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for all (o, 7) € R? x T. Inserting (2.3) to left side of (7.22)

Sp — S, 7)
_ ~ 12 — 2
=n""y —X@)aly —n "y — X(r)all;

n

=n! Z U; — (X;(7)a— X,’(To)’ozo)]2 —nt Z U; — (X(1) a0 — Xi(To)/OlO)]Q

=n! Z {X;(7)a— Xi(TO)/OKO}Q —n! Z {Xi(1) a — Xi(To)/Oéo}Q
— 2071y U{Xi(7)a - Xy(r) a}
i=1

= 7= 5] = iar = 5ol

—on~t i U;X!/(B—B)—2n~" zn: U; {X{&(@ <7) = X161(Q; < T)} .

i=1 i=1

Further, the last term on the right side of above can be written as
n YU {XB1Q: < ) - X[o1(Qi < 7) }
i=1

=n! zn:UiX;(S— HUQ: <7)+nt iUixga{uQi <7)—1Q; <7)}.

i=1 i=1

Then, (7.22) can be bounded as follows:
n 2 2 A
|7 5] = fiwm = foll + XDl - A||Pa|
+on Y UX[(B - B) + 207 Y UX{(0 - 6)1(Qi < 7)
i=1 i=1
n
+2n Y UX[S{1(Qi < 7) — 1(Qi < 1)}
i=1
Conditional on the events A;, As, Az and A4, we have

(&5 — 6;)

n

" 2 P , ~ P ,
|7 5| < am = Bl + Y X9 55 -0 +m Y [x0@)
Jj=1 j=1

(7.23) + MDA [Ba + Rafa,7)

S Hf(oc,’r) - fOHi + /J/A Hf)(a - Oé)

\1 +AD()al, — A HﬁaHl + Ry(a,7)
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for all (o, 7) € R? x T. Note the fact that

(7.24) 89 — o] +[af| - [a9)] = 0 for j ¢ gy
(7.25)
B -ao)], = |[B@-an] || +|[D@-a0] | =|[B@E-an], | +|[Ba],] .
DG -aw), - |[B@ o), | +|[Ba-aw], | =|B@-co], | +|[Ba], |
(7.26)
Dol ~ |Ba], =D, I, - | [Ba], | - |[Ba] .|
~l1Dacly |, = B, | + |[Beo], | =[5, | - |[Bal,
using triangle inequality<‘||[Da0]J |, - H[]/jao} —l—’ [ﬁ(a—ao)} - [ﬁa}
olll Jo 1 Jo 1 JOC 1
et - o] 56 | -5,

Consider (7.20), conditional on the events A, Ay, Az and Ay, add (1—p)A Hf)(@ - oz)H1 on both
sides of (7.23)(evaluating at («,7) = (ap,T), Rn(a,T) = 0),to get
IF = foll2+ (0= wA||P@ - )
N o N 2
< ([B@ a0, +[[Beof], = [Ba],) + I1cor - o
using (7.25) and (7.26)
<\ ( + H |Da
Je

§2)\‘ [ﬁ(&—ao)L H + | Feaom) = Soll,
oll1

1) + | fiaom) — f0||i

Pal

[D(@ - a)]

e [
1 1 Jollq

1

LI

which proves (7.20). O
We are ready to establish the prediction consistency of the LASSO estimator.
Proof of Lemma 1. Conditional on the events A;, Ay, Az and Ay, add (1 — p)A Hﬁ(a - a)H on
1
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~

both sides of (7.23) (evaluating at (o, 7) = (o, 70), f(0,7) — fo = 0),to get
(7.27)
HJ?— Jo
2 ([B@ - a0, + oo, - [Ba] ) + 5.
s (806 0o, + [l B,

i (1= A Hﬁ(a - O‘O)Hl

using (7.25) and (7.26)
< = /\_ A/\ _ = S~y /\_ _ A/\
<A ( [D(Ox ao)} »ll, + H [DO&} |, + ‘HDO[O”1 HDO&()HI‘ + ’ [D(O& ao)} nll, [Da} r
§2>\‘ [ﬁ(af ao)} ’ H +A ‘||13@0||1 - ||Da0H1' +R,,
Jo |1
The 3 terms on the right side can be bounded as follows using Holder’s inequality :
P . .
(728)  |Ral < mz [ XD 16671 < 2018001, A/ €3 + .,
(729) D@ o), <[B||_1@= a0l < 1@ = ao)ully y/CF +
(7.30)  [IBagl - \|Dao||1\ < |[(D=Djas| <D =D| ol <2llacll, /5 +ux

Combine (7.28), (7.29) and (7.30) with (7.27) yields

7= 5], (201 — o)l + 2l + 2ol )2 (€3 + )

<(6+2u)C1 (CF 4 pA) ? soA

which is (3.2).

7.3 Proofs for Section 3.1

Nl

) o
1

Our first result is a preliminary lemma that can be used to prove adaptive restricted eigenvalue

condition.

Lemma 6. Let Assumptions 1 hold, for a universal constant C > 0,

1 V1
HX{XZ- ~Bx/x]| <c¥EP
n ~ vn
. . EM
with probability at least 1 — (r + C’nlogXpX)
1 Vdiogp

sup || =X; (1) X (1) — B[ X; (1) X (1 ‘ <C
sup | X7 Xilr) — By i) < 0B

with probability at least 1 — ((p%)c + C(nﬁi‘ggfn)) .
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Proof. With Assumption 1, Lemma E.2(ii) of Chernozhukov et al. (2017) with C' > 0 a positive

constant provides (set n =1 and s = 2 in their Lemma) :

(7.31)
1 i) 5O @) x O > @) x @ @) x @ 13
{13}3}2{,,“2)( X = BIXV X 2 2B | max nZX X = B X7 +n}
¢2 - EM3
<exp{- OF=e) PO set t = (nlogp?)'/? then we have
3nmaxi<j<p, Var(X;’ X;”’] t
1 ~ EM?
< _ C XX _ 1
= p2€ + n log p? or(1)

Lemma E.1 of Chernozhukov et al. (2017) with C > 0 a positive constant yields:

(7.32)

- Vlogp2  JEMZ < logp? 1
SC[\/ogp+\/ fxlosr® o  flogp

1 . .

1<G1<p 1 4

E

with C' > 0 a positive constant. Combine (7.31) with (7.32),

: : - Iogp?  VEMIglogp?, /logp?
P<{ max max |—ZXZ-(J)X1-(Z) —E[Xi(])Xi(l)H > ZC[\/ng + \/ Xx 08D ]+ o8P
1<j<pI<i<p n Vn n Vvn
. ~ EM2 1/2 1 2 1 2
—P{ max max |- ZX(’)X() EXOx )| > |26 14+ EMix) “Vioep®) | Vieep
1<j<p1<i<p 'n v Vvn NG
1 ~EM?
-+ 00— — o (1
—p2c + nlogp2 OP( )7
This shows that
; V1
max max |72X E[XZ-(J)XZ-(Z)H = O( ng)
1<j<p1<i<p n Vn

Next, to show the sup norm over 7, we adapt the proof of equitation (A.1) in Lemma A.1 of
Callot et al. (2017) to our purpose.
Sort (X;,U;,Q;) i ={1---n} by (Q1,--- Q) in ascending order, then

n
1 @ xO1 (0. _ , @) xO1) | >
]P’{lg}a%pi1£|n 51<XZ X;'1(Qi <7) = 1(Q: < 7) E[X;7X; ]>|_t}
(7.33)

k
1 @) O _ oy )
< - ( >
<o e s 11 (3000 - EXOx) >

=1
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Recall matrix =, ,, in (7.15), and fi(k) which is the i-th row, k-th column element of it, then

k
1 : A , :
max max |— Z (XZ-(j)Xi(l) - E[XZ-(J)XZ.(Z)]>)| = max max |— Z (Xi(j)Xi(l) — E[Xi(j)Xi(l)]) El(k)|

1<j,i<p1<k<n n 7 1<j,i<p1<k<n N 1
= =

?

(X () Xi(l) - E[X Z-(j )Xi(l)]) §£k) is independent centered random variable (not identical) across 4,

mMaxi < j<p MaXi<k<n 2?21 var[(Xi(j)Xi(l) - E[Xi(j)Xi(l)]) fz(k)]

n

maxi<ji<p Z:;l var[(Xi(j)Xi(l) _ E[Xi(j)Xi(l)])]

< < 00,
n

max max | (Xi(j)Xl(l) [X(J X(l ]) §(k |

1<4,i1<p 1<i,k<n
< xDx — BxP XD = Mxx.
B, v, KT BT = Mo
So under assumption 1, conditions for maximal inequalities are stratified automatically. We can
apply a 3-layer Maximal Inequalities over j,[, k. Lemma E.2(ii) of Chernozhukov et al. (2017) (set
n=1and s = 2 in their Lemma) with C>0a positive constant yields:

(7.34)
n
IP’{ max max |Z (x9x0 — BIxPx0)) ) 2 28 | max max |30 (X7 x - BxOx 1) e
1<j<p1<k<n < 1<j,1<p 1<k<n | &
t2 - EM?3
<exp{— 7 P p }+C QXX, set t = [nlog(p®n)]'/?, then we have
3maxi<jicp iy varl( XX — BIXO X)) €] !
1 EM%

<omn? T Coer®n)

Lemma E.1 of Chernozhukov et al. (2017) provides:

(7.35)
max max | (Xi(j)Xi(l) —E[Xi(j)Xi(l)D (k)l < C(vn/log(p?n) + \/ EM%  log(p*n)) = O,(y/nlog(p?n))

1<5,I<p 1<k<n ' 4

E
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Combine (7.34) with (7.35),

1 « ; ; 1 EMZ% 1 2 1 2
Py max max |13 (XZ(J)XZ_(I) 3 E[XfJ)Xi(l)]) > 20 V1og(p®n) \/ % x log(p n)] L Viog(®®n)
1<jlspisks<n n Vvn n Vn

~ 2 _)1/2 2
2C<1+<EMXX> 1og<pn>>+1

1<4,l<p1<k<n N -1
1 L e EM)Q(X
- (pzn)c~ (nlog(p?n))’

1 & . . .
§IP’{ max max |— Z (Xi(j)X,»(l) - E[Xi(])Xi(l)]) fi(k)‘ 2 NG
n

=~ 2 1/2 o n \/ 1o, n
Then plug-in t = [2C | 1+ (EMx ) NG log(p? )) + 1} %ﬁ) in(7.33) and take expectations over
(Q17 e 7Qn) € (05 1) yieldsa

(7.36)

P{ mex SHPI*ZX x01(Qi <)~ E1(Qi < 7B x|

1<4,l<p reT N

S <EMXX>WW> ] Vi,

NG

@ 5 ® _ @)
—P{lga}gpfglnzﬁf X1(Qi < 7) = BL(Qi < M EX X

Jn NG
k
; ; - EM?% . )Y/?,/log(p? log(p2
Sp{ max  max |12(X£J)Xlgz> 7E[XZ.(J)XZ.(1>]))| > |26 <1+( xx) og(p n)) +1] og(p n)}

1<jiSp1<hsn n £ vn vn
1< : ; ~ EMZ% )'/2\/log(p? log(p?
<P{ max max kZ(Xi(j)Xi(l) —E[X§J>X§l)]) €@ > |o¢ (14 EMxx) “ Vo)) | Vios(pin)
1<j1Sp1Sk<n 0 £ Vn Vn
1 -~ EM?
< = +C XQX = op(1).
(p*n)C (nlog(p?n))
By Assumption 1,
50 (14 (EM% )2 \/log(p?n) og(p?n) _0 log p N Viogn
Vn Jﬁ "\ Vn Vo)’

If we consider p >> n,

. (EM% 5 )/?\/log(p*n log(p?n) Viogp
(1 ) | T, (55
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This shows that

OO @) O _ Iogp
i‘;%;lg}%ép‘;;)@ XP1(Qi < 1) = B X01 (@i <)l = 05 225)
71 ! 1/2
. Ix (7YX /
Define (s, ¢, T, %) = min min (v 5 X(r)X(7)7y)
T€T  JoC{L,....2p},[Jo|<s0  v#0,llvsglli<collvrlx 177 ll2

and recall Assumption 2 (3.3)

> 0.

k(s0,co, T, ) = min (Y E [Xi(r) Xy ()] )"/

min m
TET  JoC{l,.2ph|Jol<s0 70, llvsg Il <collvu l1n 1770 ll2

Define the event

T, )2
Ag) = {K(SO’COQ, ! ) </I<\J(CQ7T7Z)2}

The next lemma provides a lower bound on the probability of set As.
Lemma 7. Let Assumptions 1-2 be satisfied,

- 1 B EM)Q(X B 1 = EM)2(X
]P’{As} > 1 ((pz)é + C(n logpQ)) ((an)é + C(nlog(p2n))

).

Proof of Lemma 7. Start with

@30 XX en| = [ (XY - B+ B X)) 2
(7.38) > W E X (X0l - b (3 XOYX() - B X)) 2

by Holders’ inequality

(7.39)

Note that we have the restriction set definition

(7.40) vl < lvolly + gy < 1+ co) lraolly < (14 co)v/so v, Il
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% M\l\ < (1 + ¢p)y/50. Then divide (7.39) by [7.,|3 we have

”'VJ(J 2

(7.41) "Y'%X(T)/)E(T)ﬂ o |’Y’E [Xi(T)/}Q(i(T)}ﬂ < ”’7”?2 lX(T)/X(T) o E[Xi(T)/Xi(T)} ‘
70l2 17012 176l 1172 00
(742) < (1+ 00)250 %X(T)’X(T) — B [X;(1)X;(7)] ’
Since
) WERKEOXED] P EXEOXn| | AXEXen] W E XXt
o3 hwly o3 o3
We obtain
(7.44)
1 7Y T / (VX (T
|FY nX( ) }2(( )rY| 2 |’Y E[XZ( ) )2(1( )]7' _ (1 +Co)280 *X(T)IX(T) _ E[XZ(T)/XZ(T)] ’
17.6l2 175112 o0

Minimize over 7 € T on right side,

(7.45)
11X (VX / . . 1
|’Y n (T) > (T)V‘ Z min |'Y E [XZ(T) )2(1('7')] 7| _ (1 + 00)280 sup 7X(T)/X(T) —E [Xl(T)/XZ(T)] ’
177612 el 17762 TeT || 7 o
Minimize over{~y € R?’\ 0} on right side,
"X (ryYX 1
(7.46) il ”(T)F(TM > k(co, T, £)2 — (1 + ¢0)2s0sup ||~ X(7)'X (1) — E [Xi(r) X ()] ‘
’YJ(J 2 TeT || T s

The above inequality is ture for all 7 € T and {’y € R?\ 0}, so minimize over 7 € T and {’y € R?P\ 0}
on left side we obtain,

X (r)X(7) ~ B [Xi(r) Xi(r)

(7.47) R(co, T, EA])2 > k(co, T, )% — (1 + co)?sg sup -

T7€T

.

So if we can prove that with probability approaching one, (1+co)?so sup, ¢ H LX(7)X(7) — E[X;(1)X;(7)] HOO <

a2
"””(CO#T’Z)Q , that will imply of W“’fw < K(cp, T,X) with probability approaching one.
Next, by Lemma 6

sup || L X ()X (7) —E[Xz(T)’Xz(r)]‘ = OP(@>
TeT || T > !
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(7.48) P {(1 + ¢o)?s0 ilépqé %X(T)/X(T) — E[X;(1)X;(1)] ‘ > (14 ¢)%s0C };)gp} = o(1),

We get with probability approaching one, (1 + c)?so sup,cr || X (7)'X(7) — E [X;(7)'X;(7)] ||oo <
(14-co)2s0C 7”0\/7%71 < k(co, T, X)%/2 , since left side of that inequality converges to zero in probability,
and the right side is constant. Then by (7.48) and (7.47)

(7.49) P{As} >1—o(1).

O

Lemma 8. Suppose that 69 = 0. Let Assumptionl amd 2 hold with k = K(%,T, 3) for p € (0,1).
Let (a,T) be the LASSO estimator defined by (2.4) with with A\ = %7”05” Then, conditional on

E
events A1, Ao, Az, Ay and A5, we have

~ 24/2

7= 5], <22 (Vg +m) v
2

6 - aol, < —V2__CBEmA

< .
T (1=K \JCF - px ’

Proof of Lemma 8. Note that 69 = 0 implies Hf(oén’?) — f0H2 = 0.Conditional on events Aj, Ao,
Ag, Ay with (7.20), we have

9

(7.50) |7 - foHi + (1= A [B(@ - o) <22 [B(@ - o),

which implies that

. L+l ~
(751) HD(O&—O(())JS S 7'“ HD(O(—(J&())JO
17 1—p
As in Lemma 7, conditional on event As, apply Assumption 2, specifically UARE k = x( }f—z, T,X),
to yield

2 =N ]__|_'u ~ 2
o, = QH(E»TV HD(Q —ao)n||,

<2 xpia o
(7.52) = %(a — ap)'DX(7)'X(F)D(@ — a)

2max(f))2
n

SUUNITIN 2
= 2max(D)? Hf - fOH ,

(@ — ag)' X(7)'X(7)(@ — o)
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where the last equality is due to the assumption that dg = 0.
Combining (7.50) with (7.52) yields

Z +(1-mA|DG@- ao)H < 22||B(@ - a0,
2f)\

|74,

< HJ?— fo

< 22/m D@ - a0l < D) ||7 - 5o
Cancel Hf— fol| on the both sides of the inequality,
-~ 24/2)
|7 50| < 222 s max(B)
then conditional on Aq,
~ 24/2
Hf —Jo S (w/cg + uA) NN
Next, conditional on A;, Az, Ay and As, by (7.51)
e et
2( H]S a—ag)J,
2(1- \ﬁH (@—ao)y,
e <y
_Ii(].flu)\/%max( ) f fOn
44/2\ P
=02 so(max(D)?)
42X
C2 + p\
CEmrE A

which proves the second conclusion of the lemma, since conditional on Ay

(7.54) |D@—a0)|, = min(D) @ - aoll, = /3 — A& = all,

44/2 C3 + pA
1= p) &% \/C3 — pA

(7.55) 18— aoll < ¢ so\.

Hence, the second conclusion of lemma follows give the lower bound on the probability of A; N Ay N
AsNALNAs;. O

Proof of Theorem 1. The proof follows immediately from combining Assumption 1 and 2 with Lemma
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8. In particular,

1 . EM? 1 . EM?
P{A10A2mA30A4mA5}21—( — + Oy X2) —( — +Cy Xto)
pCr nlogp pCs nlogp
(1+~EMZ2]X>< 1 ~EM[2]X>
pCs % nlogp (pn)Cr ® nlog(pn)
M

7.4 Proofs for Section 3.2

The following lemma gives an upper bound of |7 — 75| using only Assumption 3, conditional on the

events Ay, Ay, Ag and Ay.
Lemma 9. Suppose that Assumption 3 holds. Let

1 1
7" = max {miin Qi — 7ol , oA (201(3 + 1) (CF + pA)? 50)‘)}

where Cy is the constant defined in Assumption 3. Then conditional on the events A1, Ao, Az and

Ay
|7 — 70| < n*.
Proof of Lemma 9. As in the proof of Lemma 5, we have, on the events A; ;A5 Az and Ay
S, — S (o, o)
(7.56) = HJ?— foHi —2n~! z": U X[(B — fo) — 20" z": U X[(5—60)1(Qi < 7) — Ry
i=1

i=1

-7 aff Bt~ e
n 1
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Then Alv AQ, Ag and A4,

S+ A [Da| ] [Sa(a0, ) + AIDagl

~ 2 ~ ~
|7 o], =2 [B@ - )|, = > [1Dool, ~ [Ba] ] -
using (7.25) and (7.26)
" 2 ~ .
> (7= £ —22 D@~ a0} |, — A|IDaoll, - |Ba |- &
(7.57) n 1 1
using (7. 8), (7.29) and (7.30) to bound the last three terms,
> | F— fo (6)\1/0 + uACiso + 2uX\/C3 + u)\Clso)
> (7= (20064 ) (€3 +m3)F s00) =0
by Lemma 1.

Suppose now that |7 — 79| > n*, then Assumption 3 and (7.57) together imply that

(80 +2[[Ba].] - [8at0,70) + APl ] 2 ||F - fo|| -~ Can” > 0,

which leads to contradiction as 7 is the minimizer of (2.4). Therefore, we have proved the lemma. [

The following lemma demonstrates that if our design satisfies Assumption 1, Assumption 4 is

automatic in our case.

Lemma 10 (Assumption 4). If Assumption 1 is satisfied, then for any n > Clc’% > 0, with C > 0,

there exists a finite constant Cs < 0o, such that

(7.58) ]P’{ sup  sup Z ‘X 25'¢ l)‘ 11(Qi <10) —1(Qs <7)| < 0577} —1

1<5,1<p |7— 7—0‘<n
(759) { sup ZUX 50 Qz < 7'0) -1 (Qz < T)] < A\Q/ﬁ} — 1

|T—70]<n | T

as n — o00.

Proof of Lemma 10. Recall the matrix =, ,,, as defined in (7.15), and let §§k) represent the ele-
ment in the i-th row and k-th column of this matrix. Additionally, define éi(") to be the element in

the i-th row and ¢-th column of the transpose of Z,, ,,, denoted as Ezn
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Sort {X;,U;, Q;}7_ 1 by (@1, - @n) in ascending order, then

]P’{ sup  sup — ’X(])X(l)‘ﬂ (Qi <710)—1(Q; < 71)] >C’577}

1<G,I<p |[T—7o|<n T

=P<{ max ma ‘X(])X(l) (Q)‘ > Cs
1<4,I<p [n(10— n)]<q<k<[n(7’o+n)] n Z 5 6 K

then ’Xi(j)Xi(l)fz(k)é(Q)’ is independent random variable(not identical) and

ma max ‘Xi(j)Xi(l)ﬁfk)éq)‘g max max
1<y, l<;D [n(to—m)]<q<i<k<[n(10+mn)] 1<5,l<p 1<i<n

Xi(j)Xi(l)‘ < EMxx + Cj < .

So under Assumption 1, conditions for maximal inequalities are stratified. Lemma E.4 (ii)of Cher-

nozhukov et al. (2017) provides (set 7 = 1 and s = 2 in their Lemma):

(7.60)

P (j)X(l)f(k)f(q)

> 2F max max ‘X(])X(l)g E(Q) +t

max max
1=5,i<p [n(ro—m]<q<k<[n(ro+n)] £ Z ‘ 1=gl<p [n(ro—m]<g<k<[n(o+n)] £

D (1) (k)
E [maxlﬁjylﬁp MaAX[n(ro—n)]<q<i<k<[n(r0+n)] ‘Xi(j)Xi( )51( gz@H

t2

IN
(@Y

, set t = log p, then we have

O(EMXX + C3)?
(logp)?

IN

Lemma E.3 of Chernozhukov et al. (2017) provides

FE | max ‘X(J xW (k
1<4,I<p [n(10— n)]<q<k<[n T0+m)] Z 6

k
<C max max E ‘X_(j)X_(l) (k) ~(q)‘
(7.61) = 10Sp In(ro—m) <a<k< (o) g SRS

+CE { ng)Xi(l)&Z(k)éfq)‘] log(2nn - p*)

ma |
195050 [n(ro—m)]<q<iSk<[n(ro+m] | *

<C(EMxx + C3)[(2nn) + log(2nn - p*)]

Combining (7.61) with (7.60),

log(2nm - p?), logp
P ‘X(J)X(l ®)ED| > of(EMyx + C. T +
1<_] l<p [n(ro— n)]<q<k<[n(7‘o+n)] TL f § ( XX 2)[( ) n ] n
SC«(EMXX +202) ,
(log p)
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There exist a positive constant Cs such that 2C(EMxx + C3)[(2n) + W] + 182 — Oy given
n> C’loﬁp, then

(EMXX —|—022)2

(logp)® or(1):

1<4,l<p |7— 'rg|<n

]P{ sup  sup Z‘X Z’(l)‘|1(Qz‘<To)—1(Qi<7')>C577}§(j

Hence, we have proved (7.58); (7.59) can be proven using parallelly arguments.
Sort {X;,U;, Qi }—1 by (Q1,-- - @n) in ascending order, then

sup
|7 —ro|<n | T

1 k) 21 AV
=P max iZ;UinosE e

[n(mo—n)]<q<k<[n(To+n)] | N “—

ZUX(SO (Qi <m0) —1(Qi<7)]| >

w}
2

then Ungdofz(k)gil) is independent centered random variable(not identical),

k
Z Var[U: X160¢MED] < 2nnVar[U; X:60) < 2nm|60||2EME «

ma
[n(r0— n)]<q<k<[n(m+n) =

and

max U; X[ (k) ¢ l)<6 max maX UX < ||dpli My x < 0.
[n(ro—m)]<q<k<[n(ro+n)] | 0% < ool 1<i<n 1< ‘ | 190l Mux

So under Assumption 1, conditions for maximal inequalities are stratified. Lemma E.2(ii) of Cher-

nozhukov et al. (2017) provides (set =1 and s = 2 in their Lemma):

(7.62)
max UX ) (k) &) > 2F max UX 5 (k) £(1) +t
[n(ro—m)]<g<k<[n(T0+m)] | ; o & = [n(10—m)]<g<k<[n(T0+m)] ‘; 0§ &
t? Sol|3EM,
<exp{— + CH olly UX, set t = (nnlogp)'/?, then we have

k ~l
3 MAX(p ()] <g<<n(ro+m)] Ui X100EVED| 2

1 . (j||5o||?EM§x
(p)¢ (nnlogp)

<
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Lemma E.1 of Chernozhukov et al. (2017) provides

(7.63)

|ZUX6£’“>§”\

[n(r0—n)] <f1<k< [n(ro+n)]

<C ZVCL’I“ Ui X[60&; k)§( 1v/1og (2n1)2 + C||0o||11/ EME y log (2nn)*

[n(ro— ﬂ)]<q<k<[n(fo+n)]

<C||dol11/2nn EME «\/log (2n1)2 4 C||0]|1 1/ EME y log (2nn)*

=C|do||1\/ EME x[/2nn1log (2nn)2 + log (2n1)?]

Combining (7.63) with (7.62),

(7.64)
k
1 k) 2(1) ~ 2nlog (2nn)?  log (2nn)? vnlogp
P max 2N UX 5,6 PED ) > 9015 EM? +
[n(To—n)]SqSkS[n(To+n)]|NZ 008767 = 20 ol ox| NG ra NG
< L Al REME
~(p)¢ (nnlogp)

3 . .. =~ £/ 2nlog (2n1)2 | log (2nn)2
Set A by (3.1),there exist a positive constant C such that 2C||8o]|1 /EMZ x [ (3; e (n )4
Vnlogp C Vlog L. /1 given 1) > C182,

\/ﬁ
C logp

sup Ui X[60[1(Qi <70)—1(Q; <7)]| > — M
i 1@< Y

_ 2 2

< 1 _ JrCH(S()HlijUX _ Op(l)
(p)© (nnlogp)
Hence, we have proved (7.59). O

We now provide a lemma for bounding the prediction loss as well as the [; estimation loss for

ap.To do so, we define a constant Ga, and functions of (X, cq, ¢r, ||d0|l1) G1 and G5 accordingly:

12 (C3 + pX)

G2 - :‘4}2 )
1
Gy =\/cr + (2@) Csl|ollrcr,
212 (C2 + u\) * /T3 C
3= V2(CE+ 1) "L (cac) 2.

K
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Lemma 11. Suppose that |7 — 10| < ¢ and |& — al|; < co for some (cr,cq). Let Assumption 2
and 4 hold with S = {|T — 10| < ¢;}, k = ff(f'“;,S Y) for 0 < p < 1. Then, conditional on Ay ,Ag,
As, Ay and A5 , we have

HJ?— foHi <3X- {G1 V GaAsg V G3/ So||50H1} ;

R 3
I~ ol < M)m-{alvcmovas solldoll1 } -
o

Proof of Lemma 11. Note that

207" Y " UX (60 {1(Qs < 7) — 1(Qs < 70)}

i=1

(7.65) |Ral = <\

by Assumption 4 (3.7). Conditioning on A4, the triangular inequality implies that
(7.66)

[[Beo], - ool <= (x

_ HX(J') (7o)

I

applying the mean value theorem to HX @) (7)
p , -1
< Z (2 HXO) (to) )

(2] )| )7 o] 2 30 O (@0 < 71— 14@i <
i=1

n

2 ‘ 20 .
o HX(J) (o) 5(()1)‘

IN
M- 3

<.
Il
=

-1
< <2 C?? - ,U,)\) ||50||1C5CT.

where the last inequality is due to Assumption 4(3.5). We now consider two cases:
~ ~1
(i) ]D(a —ao)a||, > v+ (2 o M) COs1do]l1¢r and

~ —1
(ii) HD(a—ao)JO SVe+ (2 cg—m) Cs 16015

Case (i): Combine (7.65) and (7.66)

—1

A‘HD%HI - \|Da0||1‘ + R, <A (2\/03 - ,M) 180]11C5 (cr + A/Er) + AV/er < A HD (@— aO)JOH :

1

Combine the above results with (7.27), we have

(7.67) Hf fOH (1—p )\HDa—ao)H <3)\HD047010)J

Y
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which implies

~

(1) [B@ - a0)|, <3[D@ - a0)s,

Then subtract (1 — ) Hf)(a — ),

on both sides,
1

2
<ﬂHD Oé—Oéo)J

(7.68) Hﬁ(a —ao)ss|, < 75

In this case, we are applying Assumption 2 with adaptive restricted eigenvalue condition k(so, 1+“ S, ).
Recall that X;(7) = (X{, X/1{Q; < 7})" and X(7) = (X1(7)’,- -+, X,(7)") .Note the fact that

Z{ ( ~X,(7) 0)(X{50[1(Qi<TO)_1(Qi<7/:)])}

—9 (A’X( — Al X(7 )(X 1Qi < 10) — LQ; < T)])

—2(04X( 7) — X, (T )( (t0)ap — X4(T )a())

=20'X(7)" X (7)o — 20X (7) X (70) g — 28" X (7)'X(T) g + 20X (7)"X(7) g

= — 20X (7)" X (10)ap + 20X (T) X(T)ap + 205X (10)' X (T)a — 200X (7)' X ()@
since oy X (19)" X (10)ap + apX(7) X (T) g > 200X (7)" X (70) v

> — apX(10) X(70) a0 — apgX(7)'X(7)ag + 200X (7) X () ap + 200X (10) X (T

= — apX(70)' X (70) o + o X(7)'X(T)

)a — 20X (7) X(7)a
oo + 200X (10)' X(T)a — 20X (7)'X(7T)@

Since it is assumed that |7 —79| < ¢;, Assumption 2 only needs to hold with S in the ¢, neighborhood
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of 79. As dp # 0, (7.52) now has an extra term

2

o 2 240 o e llaa
W D@~ 00y [, < 28774897 [B(@ — o),

2 |lx(7)D ’
< Z 7 a —
n H (T) (a Oéo)HQ
2 ~ ~
= —(a— ap)DX(7)'X(7)D(@ — )
n
~ 112
gl
< 2 (@ — ap)'X(7)'X(7) (@ — o)
N 291 ~112 ~ 2
<2|7- 5| |D] (Hf — fol| = X (r0) X (7o) + a4 X () X(F)ao + 20X (70) X(7)@ - 20X (7) X (7)

T
<2 DH Hf—fo
o0

“to||B| izn: {z(xi(?)’a — X(7) o) (X100 [1(Q: < 70) — 1(Qi < ?)])}

<2 (Hf o[+ 2ol sup - 5[0 s < ) - 101 < ?)|>
i=1
<203+ (|7 ] +2culilicaen).

where the last inequality is due to events A; and Assumption 4(3.5). Combining this result with
(7.67), we have

|- ] <37 [B @ o],

< 30V50||D (@ — a0), |

R 1/2
<anvan (22 (€340 (|7 o+ 2Calolicacn)) )

Applying a 4+ b < 2a V 2b, we get the upper bound of Hff foH on A1 Ay, Az, Ay, As | as

[NIE

2 2
_ 36 (CZ 2+ [\ ooy v 6v2 (C3 + iA)

2 VCOsC
- A soldoll (eaer)'?.

(7.69) HJ?— fo

To derive the upper bound for ||&@ — agl|;, use (7.68) ,

IN

C N~ ~ 3 ~
min(D) ||& — a||; < [|D(@ — ) — ||D (@ — ),
17 1—p 0

1

3 .
TV [P G oo,

IN

3 R 9 1/2
S (252 (C3+ ) (Hf —fo| + 2cacfcs||6o|1))

~ 1/2
_ (13\/5),{@ ((CS + 1)) (Hf - foHi +2C550|1cacT)> .
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where the last inequality is due to conditional on A3. Then using the inequality that a +b < 2aV 2b
with (7.55) and (7.69) yields

B (G, V2 VB NG o o
=0 e a0 T /CT— o o

Case (ii): In this case, (7.27) shows

& = aolly <

(7.70)
|7 so||, + =2 [B@ ~ o)

< 22| B(@ - a0)s,
1

—(1=mA|D@E - a0,

+ | [Besl], = 1Dao | + .
which implies

@y s+ <+ |BE - a0

A (HﬁaoHl ~ IPag |, | + R

|7 fo

2 —1
S 3\ (\/Z‘F (2\/0:% - ILL/\) C5||50||1C7-> 5
3 —1
a— aglly; < e + [ 24/C2% — )\> Csl|dollrer |
@ - all, <1—u>m<*ﬁ (2/c5-m) il 0||1>

which provides the result. O

The following lemma shows that the bound for |7 — 7p| can be further tightened if we combine

results obtained in Lemmas 9 and 11.

Lemma 12. Suppose that |7 — 79| < ¢, and ||a@ — ag||; < co for some (c;,cq).Letfj = Cp '\ ((1 + 1) /C3 + pheq + Gl) ‘
If Assumption 3 holds, then conditional on the events Ay, Ao, As, Ay , we have,

‘f—To‘ Sﬁ

Proof of Lemma 12. Note that on Ay, Ay, Az Ay and Assumption 4(3.7),

> [Uin{ (B - 50) +UX{1(Qi < 7) (5 - 50)}‘

< /M( C§+u/\> IId—aoHlSw\(\/C%Jru/\)ca

and

- D UX[50 [1(Qi < 7) = 1(Qi < m0)]| < Mer.
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Suppose 7 < |7 — 79| < ¢r. As in (7.56),

S, — Sn (o, 10) > Hff fOHi — pA (\/C’Q2 + uAca> - \er.

Furthermore, we obtain

[Sn+2[Da| | = [Sn(@o, 70) + A IDa]

using triangle inequality on Hﬁ&H — [|Daygll;
1
~ 2 ~ ~
> (7= fol| = A (wcg +uAca) = 280J10e = A (D@~ ao)|, + (B~ D)a| )
>Cyn — ((1 + 1) (\/022 + ;Mca) + G1> A,

where the last inequality is due to Assumption 3, Holder’s inequality and (7.66).
Since Cy7 = ((1 + 1) /O3 + pAco + Gl) A by definitation, similarly as in the proof of Lemma
9, proof by contradiction yields the result. O

Lemma 11 provides us with three different bounds for ||a — apl|; and the two terms G; amd G3
are functions of ¢, and ¢,. If we can show that the bound for |7 — 79| and |& — | in 11 and 12 are

further tightened, it is useful to apply Lemmas 11 and 12 iteratively. to tighten up the bounds i

1
. . . . 2C: (3 CZ4+puN)2
Lemma 9 results in that we can start the iteration with C-(,—O) = 20 +M)C(4 2+

soA. (3.2) in
(201(3+u)) (c§+p>\)%

Lemma 1 allow us to choose ¢ -
(1—p)(C3—pr)2

© _

Lemma 13. Suppose that Assumptionl to 4 hold with S = {|T — 10| < 1*}, K = K(s0, 2,8, %)

T—p
for 0 < p < 1. Let (a,7) be the LASSO estimator defined by (2.4) with A given by (3.1). In
addition, there exists a sequence of constants n,...,m= for some finite m*. With probability at

1 5 EM3, 1 ~ EM%, 1 ~ EM? 1 - BM2
least 1 — (p? +szo§p) - (pc +Ca nlog?> - (p? +Cs mogi) - ((pn)(:~7 +Cs <mog”pi>) -

5  EM5 ~  EM2
(ﬁ +Co (nlongg)> - ((pznl)cu + Cuﬁ) we have

2
S 3G2)\2505
3
(1= 1)/ C3 — pA
1 2
|7A__7_0|§ 3( +:u’> (6;2 +M)‘)
(1= p)V/(CF = pA)

HJ?* Jo

& = aoll, <

Gg)\S(),

1
1| =—G2X\?s.
+>O4 2A" S0

Proof of Lemma 13. The iteration to implement is as follows:

: 2 5 (201(3+M)) C24ur)?
5’0) = 201(3+H)(C2+#)\)2 S[)>\ and Cg‘O) = ( ’ ) S0-

= (1) (C3—pA) 2

Step 1: Starting values ¢
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Step 2:When m > 1,
Gm=D =y /elmD (2,/03 - u/\>

1
Gglm=1 :2‘/5 (022 + /~‘>‘) * VG om=1) (m=1)
3 K o T B

3 _ _
(m) _ . (m—1) (m—1)
cy = G V GaAsg VG v/ Sol| ,
¢ (1—p)/C% — pA { ! 270 3 ol 0H1}

m >‘ m m—1
cl )za ((1+u)\/()§+u/\cg el )).

Step 3: We stop the iteration if

1
Cs]|do[1c{™ Y,

{Ggm) \/Gg)\So\/Ggm) SOH(SOH]}

doesn’t change.
Suppose step 3 met under {G‘l"” V GaAsp V Ggm>,/50”5o||1} — G )\so, then the bound in the
lemma is reached within m*, a finite number, of iterative applications.

. (m—1) e Gy (m) - 3
Since G4 and GaAsg are positive, e > 0 Note that ¢o, 7 > (17#)\/WG2)\80’ we have

A -
m = ((1 + 1) \/C3 + pAe™ + G 1))

Cy

A (3(1 VC3 A m—
>— ( +’u> 22+M GQ)\S()'FGg b

Ca \ (1 - p)/C35 — pA

v

7.72 .

(7.72) 1 3(1+,u)\/C’22+u)\+G§ 2 s
Ca \ (1—-p)/C2—pux  G2Asg 2

1 [3(1+p)/C35+ pA )

>— 5 Ga)“sg

Ca \ (1= p)/C35 — pA

Note that (7.72) shows that A > 030102% are valid for all each application of Lemma 9 to Lemma

12. Then ™ ™ is the bound given in the statement of the lemma for l& — aoll; - Next,

m* A m* m*
clm™+1) e ((1 + 1) \/C2 + pAe™ D 1 G )>
A [3(1 \/C3 A
<— ( +/J) el Go)dsg + GaAsg
Ca — m/C3 — pA

(
_ (34 ) V(CF + pA) Ga o
<(1—u) (C3 — 1) H) G

which is the bound given in the statement of the lemma for |7 — 79|.
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Next, we turn to proof-of-existence for m*. First, by induction we can show that Ggmfl), Ggmfl),

ngm) and cgm) are decreasing as m increases. We start the iteration with setting of c(TO) and cg)) in step

1. By step 2, as long as n,p, sp and ||dp||1 are large enough, we obtain (in the following derivation,

C are different constant in each term,but all positive and finite)

G =/ + (2\/C§ - H/\>

2 3
GO :2\/5(02 -H:\) een /Cgo) [l _ & $2),

Then {agm V Gaso V Ggo)\/sonaoul} =G /solloll1,

follows from ||do||150A = 0p(1).

3 ~

(1) NEC) G0 _

Cy 1 V GQ)\SO \Y 3 80”50”1 CSO S()H(S()HlA,
(1—p)\/C2 — puX { }

A - ~ N
=5 ((1 + 1)/ C2 + prcld) + G§0>> = CsoA/50[[00 1A + CAV/50X + C|150l150A2-
4

1
Cs10011¢{” = Cv/s0X + Cl|do]l 150,

Thus we have

9 > e and ¢ > W),

We assume
M > Mt and (M > (mED),

it is easy to show
G > MY and 6P > Gyt

then
M > ((mF2) ang mH) 5 o(m+2),

This means that applying the iteration can tighten up the bounds.

We use proof by contradiction to be shown that there exist m* such that

{Ggm*) V GaAso Vv G 50||50H1} = G \so.

Suppose for all m > 1,
{6 v 6§ Vallboll } > Garso

As Ggmfl), Gémfl) are decreasing as m increases, and {Ggm) \Y Ggm)\/so||(5o||1} is bounded, there
are two cases to consider:
Case (1):

™ < Gy Vsolldoll

for m sufficiently large. Let Gém) converge to Gz())oo) and Ggoo) > GaAso.
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3
(c0) Gsv/50l100l[1 =: Hiv/50l[d0ll1V/ e/ ™, where H; is defined accordingl
Ca 3V Sol|%0]l1 = 1/ So{|%0|]1 Ca ¢+ ', where H; 1s defined accordingly as
(1= p)/CF = pA

L 6VE(CE+ )} VTR
1= .
(1= )/ C5 = pw

e =Hisol[do[l1¢3°,

—1
e =Cr A ((1 + 1)\ (CF + pA)ed + /e + (2\/09? = M) 055o|103°>
—1
—O (140 (O3 4 e + VAR + 07 (2y/CE- ) Callllaes

=: HQ/\CZO + ng\wcio + H4H50H1/\C$O,

by defining

Hy=:Cyt (14 p) \/(C3 + ph),
H3:SC4_1,

-1
Hy=:C;! <2,/c§ — ,m) Cs.

To solve the above equation system, as n, p are sufficiently large, \/ C2 — p) and \/ C2 + p) converge

to constants; so||d||1 A and ||5o|l1 A converge to 0,

= HE Hysol|3],02 + Ha) >2—0(A2)
m =\ 1= HZHyso|[0][1 )} — HiAJ0]2 .

c2°) =H{so||60l11¢2° = Op(s0l100[1A?).

Then,

o 1—p)\/C3 — X
G Vool = L EVE =1 0 0, ool 22),
Obviously, the above leads to contradiction, because ¢ < soA? and Gém) solldo|l1 < G2Aso.

Case (2):
™ > G sol[Golly

for m sufliciently large. Let Ggm) converge to Ggoo) and Ggoo) > GaAso.
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Thus, we have that

C((IOO):Gl 3 3 1)
(1= p)/C5 — pA

) = O A (<1 1)/ (G5 + pA)el) + Ggm))

3 0
=C; '\ ((1 + u) 1/ (C3 + pA) + 1> Gl

(1= )/ C3 — pA

o (3 +p) (C%-l—,u)\) 3(1+p) (02+N)\) - 1 .
— G ( (1—N)\/W >)\ +C’ ( (1- C2 — i ><2m> Csl|d0l]1 Acs

1)

= H5)\ (OO +H6||60||1)\C(OO)

where Hs and Hg are defined accordingly. Furthermore, as n, p are sufficiently large, \/C% — u)
and /C% + p) converge to constants , [|do[1 A converges to 0,

Hs\ 2 )
X = — | =0,(\).
T (1—H6|5o||1)\) p(A%)

Then

—1 -1
G§°°)2<1+<2VC§—M> A||60105> &4 (2G5 -] Collilhel® = 0,0+ 22,

which leads to contradiction, because ¢ < soA? and G(loo) < GaAsg.

Finally, Lemma 11 yields
. 2
Hf - foH < 3G2M%s.

O

Proof of Theorem 2. The proof follows immediately from combining Assumption 1 to 4 with Lemma

13. In particular,

1 EM2 . EM?
P{AlﬂA2ﬂA30A4ﬁA5}21—( ~ Xz) ( +Cy X“’)
pC1 ’n log p nlogp
(1 g M o EME
pCs nlogp ® nlog(pn)
1

- EM - EM?
—( °C + Cho XX)—( + Ci9 X2X )
p2Co n log p2 (p?n)Cn nlog(p?n)
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7.5 Proof of Asymptotic Properties of Nodewise Regression Estimator

The proof is similar to Lemma A.9 in the Appendix of Caner and Kock (2018). We adapt their

proof to our purpose.

Define .
Ano e — X 7,(@) o < m ,
e = {max sup [ XD() 00 e < =255
H(s-,co,jnM_ ,,_,)2 N )
=17 5 SR(sj e T, M)}
Brode ={ max sup HX J)( ) N(j)/n”oo < M},
) JjEHorj+pEH 1T = 9
) nsl,c,T,N_-;? R
IB%SEZ‘)/ ={ ( 55 CO ; Js J) < H(Sj,Co,T,N_j,_j)Z}.

The above four series of events are uniformly on 7 € T.

Lemma 14. Let Assumptions 1-5 be satisfied and set Apoge = % lOflp. Suppose that 3\(?) #£0
estimated via (2.4). Then

P {Anode mj+p€H A(Ejz/ N IBnode N, j€Horj+peH B(J) } >1- Op(l)'

Proof of Lemma 1/. To prove probability of event AC , | we adapt the the proof of Lemma 4 to our

purpose,
P{ASC .} =P max sup || XD ()00 /n||, < HAnode
nodae j+p€H e < < 2
= ) < HAnode fiAnode
’ {THmX P ZX .

Sort {X;,U;, Qi1 by (Q1,--- @) in ascending order, then
i /\no e
]P’{ max sup max g X (]) < HAnode }
j+peH TeT 1<I<p-1m 2

] )\noe
:]P’{max max max ZX =3 .J)gud}.

jH+peH 1<k<n 1<I<p—1Tn 2

As there are 3 layers k, 7, across maxi<p<n MaX;pe g MAX1<<p—1 Zl 1 X( 7 (]) , combine (7.16)
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with (7.17) with setting ¢t = /nlog((p — 1)hn),

k

1 N

P{ max max max — E XZ-( b )Ugj) >
J+peH 1<k<n 1<I<p—1 N “ 1
i=

20[\/71 log((f: —1)hn) N VEMZ, 10i((p — 1)hn)] N nlog((g —1)hn)

}
IV S
S[(P* 1)hn]C +Cnlog((p_ Dhn) p(1):

We see that

nlog((p —1)hn)

2@[\/”10g((p— Dhn) VEME, log((p — 1)hn)

n n
. \/nlog p3 ~\/EM? logp?
<26 +1) VL8P | o6 Xy 08P
n n

~ - [EM?Z2 1
<4/ loip((gc F1)VE+ GCy/XT“ng)

provided that we can find some constant C >0.

Therefore if we choose #2zede = | /182 (20 + 1)/3 + 6C'y/ w)v the same rate as (3.1),

~ 2
1 s EMR,
p—1hn]¢  nlog((p —1)hn)

1+

c
IF){‘&node} S [( = Op(l)

Using analogous arguments to that discussed above with regard to the transpose of Z,, ,, in (7.15)
and éi(l) as the element in the i-th row and [-th column of the transpose of =Zn,n, we can conclude
the following inequality:

1 ~ EM%,

p—1)hn]C - Cnlog((p —1)hn)

P {Bgode} < = Op(l)

[(
Next, we bound the probability of event (ﬂjﬂ,eHAgz,)C and (ﬂjeHorj+peHBgz,)c. Note the fact
that for each j+p e H

T = AT H(ga COaTaM) H(S'7CO7T7M)
(1+ co)?s; sup 1M j, (1) = M_j—(T)]|oo < (1 +Co)2551€1% [M(7) = M(7)]|oc < 5 <=
implies that
— K/(S',CO7T7M) j
{(1 +c0)’s; SUP [|M—j,— (7) = M~ ()lloo < ——5—(C AL

Thus,

{0+ coPssup IF7(r) - ar(r)o, < HE0TE
TeT

C m]’-&-pEHAg\)/'
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Then by arguments exactly parallel to those in Lemma 7, we can show,

P {(ijrpeHAgz/)C} < 01)(1)

provided that x(s;,co, T, M) > 0. Similarly, we can show

P {(mjeHoerrpeHBg\)/)C} < op(1)

Therefore
P {Anode mj‘f’PEH A&(EQ/ N IBgnode ijHorj'HDEH IB(EQ/} >1-— Op(l)-

O

Proof of Lemma 2. Given V7 € T and each j € Horj+p € H, (4.12) is a loss function for linear
model, the pointwise oracle inequalities from Theorem 2.4 in van de Geer et al. (2014) for linear
model have been proved.

As the uniform oracle inequalities only involve noise conditions A, 4 and B,,.q4., and adaptive
restricted eigenvalue conditions M4 pe HAgz/ and NjecHorj+pe HIBB%%, Therefore, by Lemma 14, we

obtain the following results uniformly in T and H,

. XD ()5(7) = XD A € oo Ao
(7.73) ilé%j%aéq” (1) 5(7) () A5 (T)|In < 2, o, T, z)\/g d
7.74 sup max ||v;(7) =V (7)|l; £ ————=55Anode
( ) Tep%j—kaHH%( ) =%l < E(E,CO,T,E)Q d

with probability

P {Anode mj+p€H A(E]\)/' N Brode ijHorj-‘rPEH IB(E]\)/} >1- 0(1)

In line with the inequalities presented in Lemma A.9 in the Appendix of Caner and Kock (2018),
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we can establish the following set of inequalities:

_ [logp
. A(r)— A, -
(7.75) ]gaegilelpll (1) = A7)l = Op (S " )
slogp
. A(r)— A, -
(7.76) ]g;ag;[igpll (1) = 4;(7)]l2 0p< " )
(7.77) fﬁ,%’%i‘g;'m il =0, (\/5)
1
7.78 ——=0,01
(7.78) SR SUD e p (1)
B _ [logp
(7.79) JeHﬂl%?fpeHiip”B( 7) = Bj(7)[lh = Op (8 . )
B Slogp
(7.80) JeHﬁ??fpeHi‘;p”B( 7) = Bj(7)ll2 —Op< - )
(7.81) e sup B () = 0, (V5)
1
(7.82) ax sup=——=0,(1)

J€H0r3+p€H reT Z;(7)?

We now turn to (3.4) and (4.22),

maxsupll@( );=O(m);lh < max  supmax{2]|B;(7) =B (7)l|, [|B; (1) =B, () 1+ 4; (1) = A; (7)1},
JjEH jE€EHorj+pEH T

magcsup |O(r), ~O(r)lla € max  supmax (2] B,(r)~B;(7) o, | By (r) By (7)ol s (7) -4y () ).
magesup [6(7); 1 < mox  supmace(2 B;(7) 1.1 B,(7) s + 14,(7) 1}

Combine the two cases, we have proved the first 3 inequalities in Lemma 2.

We now consider max;e g sup, e ||(:‘)(T);§(T) — €} loo-

- M ﬁ(T
m 1:) — e = m — B . — o~ !
JGH%;{@SLGI%)” (M)~ €jll = eHr%f@sgr)”[ (7); (T)j} [ M(7) M(r ] ol

~ ~ A
= max su N(1 0} —e€ < max sup|B N(r)— ¢, max Ssup —= .
e | [BELNE) 0]~ < s sup BN = ¢l < | e sup 2225

> B 5 i M M) [,
j+mpa€>§{§telgll®( 7);2(7) = €l = ?pae)%ii%’”[ B(7); B(T)ﬁA(T)g} [ N(r) Mi(r) 1 ~ €l
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= max sup | [A(r);M(r) = BE);NG) - Am;ME)| =0 &] |

~ —~ B ~ ~ N ~ —~ 5 A d A d
< max supmax{||A(7):M(7)—¢&"||co+||B(7).N(T)=&" |loo, |A(T) M(T)—€"|| oo} < max sup —esc 4 -2
< g, sup (A ) 2 o B 7)o LA ) ) <, s 25 St

O

7.6 Proofs for Theorem 3 for Case I. No Threshold.

This subsection explores the case where there is no threshold effect, i.e.the true model is linear.
To show that the ratio

Vg (@(#) - o)
VIOHE(#).0(7)g

is asymptotically standard normal. First, by rewriting (4.8),

(7.83) t=

™M

t =1ty +to,
where
o= SOEXGUMS
VIOHE(#).0(7) g
N AR
VIOHE()..0()g

It suffices to show that ¢; is asymptotically standard normal and t2 = op(1).
Lemma 15. Suppose that Assumptionl,2,5 and 6 be satisfied, conditional on events Ay ,As, As,

Ay, As, gA(T) = OP(M%)_
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Proof. By holder’s inequality, Theorem 1, and Lemma 2

gAF) = max|A;(7)] ) gl

jeH

_ max|( (%)i(%)—é}) n(a(7) —ao)l Y gl

JjeH jEH
< max| (@( )2(%)é;)ﬁ(d(f)ao)|;{|gjl
< mas [18;(7)5(7) ~ &l vala(?) — aol Y los
JjEH
>\node )\node
< C(ZAlQ(%)j JFZQ ( )J> f /\SO\f
_ o (Sovhlogp

Lemma 16. Suppose that Assumptionl to 6 be satisfied, then

l - (k) 3 () x(3)y2 _ &) v() vG)nal ) log p

l — T
w125 (P XO0) - B [(XPxC02] | = 0, (VL)

1<k,l<p m <
i=1

VI
max_ sup |7ZX’“) )X (ru? - E[ng)(T)XEl)(T)Uﬂ|:Op( L

1<lk<2p7.e']1* n “ Vn

Proof. Apply Lemma E.1 and E.2 of Chernozhukov et al. (2017) under Assumption 6 (i) and (v),

by arguments exactly parallel to those in proof of Lemma 6, and its proof therefore omitted.

Lemma 17. Suppose that Assumptionl to 6 be satisfied, conditional on events Ay ,As, Az, Ay and

A5, then

98(7)E(F)uB(F)g — §O(F)S(7)u®(7) 9] = O, (hf loip)-
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Proof of Lemma 17.

Recall for no-threshold case (7)., =F [X;(7)X}(#)U?] = E [X;(#)X}(7)] E [U}]
Ui(#) =Y; — X[(F)a(F) = U + Xj(#)ao — X(7)a(F),

7

. 1 — X RS
B =3, 2 Xi(FXUNTE,
i=1
. 1 —
and set X(7) = in(%)X;(%)Uf
i=1
We first show that

9'8(F)E(7)2uO(7) g — §'O(F)S(7)0uO(7) gl
= |g6(F)E(F)2u®(7)'g — ¢'O(H)S(7)2uO(F) g + ¢'O(F)E(F)0uO()'g — 9’ O(F)5()2uO(7)' g
+9'O()2(7)2uO(7) g — g'O(F)E(F)0uO(7) g
(F)eu®(7) gl + 19'O(F)E(#)2uO(7) g — ¢ O(F)E(7)2uO(7) gl
+gO(F)E()2uO(F) g — ¢'O(F)E(7)2uO(7) g

IN
5N
@
—~
\‘
S—
™
—
2
8
S
@
—~
>
-
|
Q\
@
—
=
\i

To prove this lemma,we need prove the followings

Step 1.

IN
Y
o)
—
>
~—~
™M
—
AT
8
IS
|
M
S
SN— —
8
<
o)
—
-
=)

IN

lg B RIEF)ew = E(F)auloo
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; Z( U2 () — Xu($)X(7)U?)

= Z )(Ui + X (#)ag — X (7)a(7))? — Xi(7) X} (7)U?)

Recall Lemma 16,

LS 0 )2 8 () (2] | Tog p
1<k?§(<p|52;( X X) _E{(Xi XX )]|—Op

max |~ Z xPxOu)? - B |(xPxPvy] 1= o, ( v logp)

1<kI<p m
log p
[a(P)[l1 < [laolls + Op (sm/ . )

IX(H)a?) — X(Faoll = O, (\ﬁ log p )

Applying Theorem 1,
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laolls = Op(so0)

By Cauchy-Schwarz inequality and holder’s inequality

mas <pizp [ S0, (X (F)XY (7)apXu(7) (Xi(F)ao = X{(7)a(7)) |

< Vmass <<y max <ic, £ (X (3)XO ()2 (X! (7)a0)? X (F)an — X()a (7).
< sy cpzay mas i 2 0 K BXO(3)? (masscuzey X)) ol 1K ()0 - X (),
< Vmasici o 2 (X XD XD agl? - 1(Qs < HIX(FAR) - X(Faoll
: o (/)
maxi <k <oy |2 S0y (Xi(F)X](7) (6 (F) — a) Xa()X)(7)a(7)
< maxicpiczy maxicicn /2 0 (XPHXD (2)? (65X (7)) X (F)a(7) — X(F)aolln
< Y S (KO XOXD R @ < H)IXF)a(F) - X(#)aoll,
: o (Vi)
maxy << |2 S0y (X(F)ao — Xj(F)a() (X (7)X (7)) Uil
< 2y/maxicpiy 2 S, (X XDU) - 1(Q < H)X(H)a) - X(F)aoll,
: (/)
Hence,

1S()au — 2(F)aulloe = Op (\/% 10§p>

9'0(H)S(F)0u®(7)'g — ¢ O(F)E(7)2uO(7) g
< FEIGIHMG ) — S()ulloo
< (Sjen l9iimaxjen super O 15(F)ew = (F)aulloc

HECRIE

Step 2.Next, we show that



Note that

S(P)aw — 2(F)zu
= Y Xi(P)X(HUF — E [X(7)X(7)U7]

Recall Lemma 16,

max ZX(k) XV (#)U2 - E XE“(?)XE”(%)UZ}|:Op<vl°gp>

1<1 k<2p n

Therefore

90(AE():u0(7)'g — 9 O(F)Z():uO(7)'g
190(7) (£(F)aw = 2(F)au) Ol

IN
>
<

< 19 ORISR e = £(F)aul

~ 2 .
< (Sjen lgslmaxjen sup,er 10;(A)N1) 1E(F)an = S(F)aull
<

0,150, (/522 = 0, (5222

Step 3.Next, we show that

9'0(1)S(F)2uO(7)'g — ¢ O(F)E(7)2uO(7) g| = 0p(1)

By Lemma 6.1 in van de Geer et al. (2014)

|9O(F)Z(F)2uO(7) g — 9 O(F)(7),uO(7)'g]

< 19 eulocll (BG) — ) gl +21 (67) <x>)gnnz (*Ygl>
= 5@l (BG) ~ (1)) gl + 26(5, c0, T, S| (B) - )muw<>m2
< IEEeullll (B) — 1)) gl + 24(5, 0. T, S| (B(F) — (7)) all2(5, 0, T, ©) g

As || E(T)zulloo = maxi<r<op £ {ng)(%)Xgl)(%)uf}, k(8,¢0,T,E4,) and &(5, o, T, O) are assumed
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bounded from Assumption 6,

| (8¢) - () gl
=3~ (19;1165(7) - ©;(r0)1)
jeEH

<Z|9]\Supma><||@( ) = 6;(10) |1

jEH TET

<\fsupma}>;||9( 7) = ©;(70)llx

TET
o v155)
n

1 (8¢) - () gl
=13 (©,(7) — ©;(r0)) gl

jEH
<max||@ (7o ||2Z|93
jeEH
<\/ﬁsupmax||@ (1) —©,(10)|l2
reT?

o)

|9'8(7)5(7)2uO(7)'g = ¢'O(F)2(7)2uO(7) 9|

Furthermore,

< 1Sl (83) — O)) gl +26(5,co, T, %] (8(7) ~ O()) gll25(5,co, T ©) g2
< o, (Vi) +o, (Vi)

= Op (\/% 107ng)

Finally, by Assumption 6 (ii),

() 0 o) 0 ) )

Proof of Theorem 3 Case I: no threshold. Step 1.

Step 1.1) Given that 7 is undefined and unknown in the current setup, it is necessary to show the
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’ ’ /
asymptotic standard normality of #{ (1) = \/g %((T)X (T))U/g(l ;
g T T Tu T

for any 7 obtained from (2.4), we need to show get t|(7) and ¢; are asymptotically equivalent.
Note that, using E(U;|X;) =0 for all i = 1, ..., n, we obtain

uniformly over 7 € T. Subsequently,

, '@(7)2?_1Xi<r>w/n1/2]
7.84 E[t,(r)] = =0,
(784) (7 VTOTIN (BT
and
2
Bl () = g'@w)zz‘_lxxﬂw/nl”] -
(7 V7SO0 ) g

Hence, to use Lyapounov’s central limit theorem, we check the conditions for a sequence of indepen-

dent random variables, it suffices to show that for some £ > 0

>icy Blg'©(r)Xi(r)Us/n'/2 >+

(GOSN rE

Let S(7) = UjenSj(7), then the cardinality sup, oy |S(7)| = p A h3.

2+e
2+ .
ElgemXinui/m?| " < B||lge@)/m 2 max (X9 ()1;)
jes(r)
2+e€
lg'®(r)/n277 max | XY ()0
jes(r)
) 24¢
< lg©()/n 23+ E | max |X(r)U,
j€S(r)
24¢€

<llgo@m e | Y [xP )
jeS(r)

< |lg'O(r)/n*?||2*¢(p A h5) max E UX
jeS(r)

2+e:|

1/2)2 2+€
< |lg'O(r)/n?||2T= (p A h3) max “X }

_ o (3> O AR (h5)!*</2p Ol A
-0, (U7) 70 e ) P | (X70)

where the 1st inequality follows from the Holder’s inequality.

By Cauchy—Schwarz inequality

E {(X}”Uiﬂ <E [(ij))4] E [(Uz‘)ﬂ

is bounded by assumption 1.
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Thus takee =2,y " | E ’gI@(T)XZ‘(T)Ui/TLl/2|4 =0, ( hé) )/\O (U“) p) = 0,(1) by Assump-
tion 6 (iv)
Next, we show that ¢'O(79)X(7).©(7) g is asymptotically bounded away from zero. Clearly,

9'O(T)E(1)0uO(7) g > (5, 0, T, X [lg'O(7) I3
(7.85) > k(5,co, T, pu) |9|135(5, co, T, ©)?
= ’i(ga €o; Ta Ez’u)"{/(‘; €o, T7 9)27

v

which is bounded away from zero since k(8,cp, T, X,,) and (5, co, T, O) are bounded away from
zero by Assumption 6 (iv). Hence, the Lyapunov condition is satisfied and Vr € T, (7) converges
in distribution to a standard normal.

Step 1.2).

Let
. g'e(m)X ()U/nl/2

VIORER)..0(7)g

9OFX U/ — g OFX (F)U/n'?|
<llg’ (6%) ~ 0F)) I IX(F)U/n*/?|

Conditional on A, Ay, A and A4 and by Lemma 2

~0,(VEsY2ER)0,(1/logp) = O,(Vis5E) = o,(1)

g (@(?)X’(?—)U/nl/Q - (:)(?)X’(?)U/nl/z)
\/ 967 wO(7)'g

1 —t] = = 0p(1)

M)
@)
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(VoBrE()8( Vg — VOIS B( s ) 4 0K (YU '

th — 1| = —— —
VIOR)E().u6(2) 9\/7OFS ()2 0(7)g
) SOM)E(F)eB(7) g — 9 O(F)S(P)nO()g) g OF) X (F)U/n'/?
VIOF)E(7).u8(7) 97O TS ()2aO(7)g ( 9'0(#)5(7)zu®(7)g + ¢g'@<r)z<r>w@<r)'g)
- 19'0(F)5(7)2uO(7)'g — 9'O(F)2(F)2uO(7) glg' O(F) X' (7)U /n/
VIOR)S(3)0u8(7) /7O (1) (1) O (70 ng@(r)i«)mé(%)'g T wg/@mz(r)m@(r)/g)
0, <h 5352 105?) O, (Vhslogp)
<
VT80l oy T OIS T8 a (/#BIE) 80 e + /T OIS0
=op(1)
by Lemma 17.

Then combine the above two,

Step 2. By Lemma 15,

Finally, by Slutsky’s theorem

t=o0,(1) + | % N(0,1).

7.7 Proofs for Theorem 3 for Case II. Fixed Threshold.

This subsection explores the case where the threshold effect is well-identified and discontinuous. To
show that the ratio

g'(a(7) — o)

(7.86) p= - Yrg(ald) —a
VIORE()..6(7)g
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is asymptotically standard normal. First, by rewriting (4.11),
t =1ty + to,
where

i

and

()X (0)U/n"/?
'O(H)E()au <>g
(O(H)X(F)U — g'6(10) X (10)U)//n'/? + g'O(#) (X' ()X (1) — X ()X (7))o /n'/? — g’ A(F)

ty =

+49
\/g’@(?)i(f)m@(f)’g
It suffices to show that ¢; is asymptotically standard normal and ¢, = 0,(1).

Lemma 18. Suppose that Assumptionl to 6 be satisfied, conditional on events Ay ,Ag, As, Ay, As,
then g'A(T) = Op(isu\/%ogp).

Proof. Recall that A(7) = /n(O(1)3(7) — Iy, ) (a(1) — ap)
Thus by holder’s inequality, Lemma 2 and Theorem 2,

gAM) < max|A; (7 B lgsl

jeEH
— x| (8;(7)5(7) - &) Vaa) eoll 3 lai
< max (8,55 - &) Af)—a0)|;|gj|
< max [6,(7)2(7) — &l vala(? ,%”1;%

IN

Anoe )\/’LOP
C( de 4 d > V- AsoVh

24%(8),  A°(#);

The results of Lemma 18 are similar to those in Lemma 15 but the assumptions differ.

Lemma 19. Let Assumptions 1, 2, 3, /, 5 and 0 be satisfied and let g be 2p X 1 wvector satisfying
llgll2 = 1. Then,conditional on events Ay ,Aq, Az, Ay, As |

o' (8() ~8(m)) Ih = 0, (ﬁﬁ)

Proof of Lemma. As @Q; are continuously distributed and E {|Xi(j)Xi(l)HQi = T:| is continuous and
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bounded in a neighborhood of 7y, conditions for Lemma A.1 in Hansen (2000) hold. Then

12(70) = 2(7)loc

| g L ) MO ] e
M(1p) — M(7T) M(19) — M(7)

<[ M(70) — M(7)

= mas B [IXPXP|1(Qi <) ~1(@Qs <7

<Clro—T7|

log pso
n

o, (<5

where the last inequality is by Lemma A.1 in Hansen (2000) and the last line is due to Theorem 2.

Consider

Then using Lemma

(7.87)

Finally,

lo' (8(7)

<> 19, sup max|
jEH

—0, (x/ﬁ W)Jrop

10;(7) = ©;(70) 1
= 18;(7) (£5(10) — %;(7))" ©;(70)lIx
< 10;@h(Z5(70) — £5(7)) ©;(70) [l
< 0;M1110;(m0) 1]l (Z5(70) = Z5(7)) lloo

2

lg" (©(F) = 6(70)) [l
= (I9110;(7) = ©;(r0)llh)
jeEH

<> Ig]\SUPmaXH@ (1) = ©;(m0)llh
jeH

< ) )

—\F‘Srlelgrjné}?”@J(T)”l%%("@J(TO)HlH(Z
1

:Op <\/ES$0 O;glp)

o)l

i (T) = ||1+Z\9J|Supma><||@ (1) =

JjEH

10§p> =0, (x/ﬁs@)

70

<\fhsso

j(To) -

25(1)) oo

0 ()l + ) IgglsupmaXH@ (10) = ©;(70)llx

jeEH



since sg+/ 105;; = 0p(1) by Assumption 1.

O

Lemma 20. Suppose that Assumptionl to 6 be satisfied, conditional on events Ay ,As, Ag, Ay, As,

9 (B()X (U = 8(r) X' (r)U) /2| = O, (\/ﬁ lf/gf) 0 (W)

Proof of Lemma . To prove this lemma,we need prove the followings
19’ (6() = 6(r0)) X/ (70)U|/v/n = 0,(1),

9/ (O(F)X/(7) = O(7)X (10) ) Ul v/ = 0,(1).
On the event A1,Az and Ay

X! (70)U 1 e
< - 2
H \/ﬁ oo < 2\/511)\ Cs + pA

Then, by Hélder’s inequality and Lemma 19

9’ (6()X () -

o
<llg’ (6() = () I

7.88
( ) <O, (ﬂs\/ O;Lgp> Op(V/1ogp)

o g)

( ) < >)U|/f

Considering || X (T — TO)U loo, by Assumption 4 (3.6)

HX’(%)U - X’(TO)UH _0 (M).

00
n n P n

/O() (X'(7) — X' (r0)) Ul
<y T X0y g6

(7.89) X’(%)U X (To)U

<l = o llsellgl a6 (7)
1 hssgl
<Vi0, (VI5) 0, (x/?onogp> _o, (ijﬁogp)
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Hence, combine (7.88) and (7.89)

5 (OX ()~ S () 4 = 0, (VL) + 0, (L REL )

O

Lemma 21. Suppose that Assumptionl to 6 be satisfied, conditional on events Ay ,As, As, Ay, As,
then

wamxmmm—xmmm%wm:%<wﬁmw>

vn

Proof of Lemma 21. There are only two cases for X'(7)X(79):
X'(7)X(10) = X'(70)X(70) or X'(7)X(70) = X'(7)X(7), then

l9'0(F) (X (1) X(70) = X' (7)X(7))ao/n'/?|

o 0 M(7o) — M(#) T
g\/ﬁj;{gj@j(f)lllll 0 Mi(min{r, 7}) — Mi(7) ] [50 50} loo

<vrmax ;%) Y lg;lIM(70) = M(7)lloo 60 1
jeEH

L 3 @) O R
< m X\ x! Q; —1(0;
1§j%}<(17 n [3 [3 [1( T <T0) 1( 7 <T)]
L= () @
< max su 75 XVXV1(Q; <) —1(Qi <7
_ISjJSp‘TfTo‘SI‘DT()—?‘ n — v i [ 0) ( )

=N I
<Cs|lto —7| =0, (SO ng)

where the last equality follows from Assumption 4(3.5).
We know that sup,cp max;cy ||(:)j (1)|l1 = Op(+/5) by Lemma 2
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96(7) (X (7)X (1) — X/(7)X (7)o"
<V max|[6;(%) 1 Y 15| IM(m0) — M(#) 160 ]
JEH
<Vi0,(VI)0, (*EL ) o]

0 160[|150V/h5 log p _0 sgV/hslog p
- p \/77, 4 \/ﬁ

O

Lemma 22. Suppose that Assumptionl to 6 be satisfied, conditional on events Ay ,As, Az, Ay and
As, then

~ A ~ 1
19'0(7)%(7)eu®(7)'g — 9'O(7)5(7)2uO(7)'g] = Op (hs\/% 0§P> .
Proof of Lemma 22 .

Recall £(7),, =B [Xi(7)X}(7)U?] = E [X;(7)X}(7)] E V7],
{(7) =Y — XU(F)al) = U + Xi(ro)ap — X4(7)a(7),

9'0(H)8(#)2uO(#) g — g'O(F)(#)0uO(7) g
= |gO()E(F)auO(7)'g — gO(F)S(7)2u®(7) g + g'O(F)E(F)0uO(7) g — g'O(F)S(7)2uO(7) g
+9'0(7)5(7)2uO(F) g — 9'O(F)(7)2uO(F) g 0
< 1gOFH)S(H)euO(7) g — g O(F)E(F)2u®(7) gl + |9'O(F)S(7)0u®(7)'g — ' O(F)E(7)2uO(7) gl oo

73



Step 1.
9'0(H)E(F)0u® () g — ¢ O(F)E(7)2uO(7) gl
< 19'0(F) (S(F)eu — £(F)au ) O(7) 9]
< 19O ZI1Z(F)ew — E(F)wullo
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i(%)wu - 2~:(7A')Iu

—Z( JO2(7) = Xi(7)X(#)U2)
*Z ) (Ui + Xi(r0)an — Xi(7)a(7))? = Xi(7)X{(F)UF)
:HZXi(%)X

o3 (UKL X0 X (o))
3 (KX (P X)X (D))

23 (XA X (70) KU ()a (7))
i=1

+=3 (1) Xi(70)Us)

_z Z (7) X, (7)U;)

1 i (X (X))

1 z #)aoX!(r0) (X! (o) — X,(F)a()
G

Recall Lemma 16,

1 ; ; I
i 15 3O XX [ O xR = 0, (YO

1<k,l,j<p N -

L () (D772 ®) O Viogp
1£%§p|5;<xi xPuy? - B |(xMxPu2| | =0,

Applying Theorem 2,

Afa lo
la()ll < llaolls + Oy (sm/ 5”’)
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1X(7)a(7) — X(10)ol|n = Op <\ﬁ 10gp>

laolli = Op(s0)

By Cauchy-Schwarz inequality and holder’s inequality

maxi<i<zp |2 S0 (XPEXO (F)abXi (o) (X (10)ao — Xi(F)a(7)) |

< max <, <op Max1<i<n £ Sy (X (7)X (7))2 (20X (70))° | X (70) a0 — X(7)6(7)
< %naxlgk,lgzp mas << 2 S0, (X (FXO (7))2 (maxs<ieay X () ol 21X (mo)eto — X()a(7) .
< Vmaxicisp £ 2 (X XD XD 20l 1(Qi < 1) 1(Qi < DIX(P)aF) = X(r)aolln
maxi <<y [ S0 (X (HXO(F)a(7)XF) (X (7)a(F) — Xi(ro)ao) )
< maxy < cay maxi<ie /2 S, (X (H)XD (2))2 (00(1)Xa (1) 2K (F)al() — X(mo)ao|
< Ymaxicie 2 (XOXOXD2a()1Q: < H)IXF)AR) - X(m)aol
< Oy (\/%\/@>
maxi <y <2y |2 1y (X (r0)a0 — Xi(7)a(7) (X (7)X (7)) U]
< 2y/maxicrugy 250, (X XDU)? - 1(Qi < )X (7o) — X(H)a(?)]ln
: o (%)
Hence,

I2(F)aw — S(F)zullos = O (\/%\/@)

|9'6(#)5(#)2u6(7)'g — §'O(F)(7)2uO(7) 9|
lg' OB RIZ(F)zw = S(F)oulloc
(Z;eH |9j| max;em sup, e ||@ ) ||E zu_z 7)wulloo

HECRIEE

IN

IN
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Step 2.Next, we show that

Note that

Recall Lemma 16,

2z (k) ayse D anyr2 ) 2y D avr72] | Viogp
1<1 k<2p|n ZX (T)Xz (T)Ui K Xi (7')3(z (T)U }|Op< )

- 1 Vi
Therefore
19'0()E(F)2u®(7)'g — 9 O(F)Z(7)2uO(7) |
< 98(7) (£()aw — S(F)u) O3]
< OIS s — D(F)rullc
< (Syen ol masser sup,cn 18, () ) 1E(R)en — B(3)eullc
<

O, (h3) O, <\/@> =0, (hgﬁ)

Step 3.Next, we show that

9'O(F)S(F)0u®(7)'g — ¢ O(F)E(7)2uO(7) 9| = 0p(1)

By Lemma 6.1 in van de Geer et al. (2014)

19'0(7)2(#)2uO(7)' g — ¢'O(7)S()2uO(7) g

< 19 )eullcll (87) ~ 0)) g +21 (8(7) — (%)) s I5(7)eu (g1l
= I5@eulloell (B() — ) gl +25(5, 0, T, B (8(7) - O7 >) 9l210()'g]l2
< 1Sl (83) — ) gl + 26(5,co, T, )| (8(7) - @(f)) 91125 (5, 0, T, ©) ]2

As [|2(7)gulloc = maxi<p<op E {ng)(%)xgl)(i’)uﬂ, R(8,¢c0,T,X4,) and &(5, o, T, O) are assumed

7



bounded from Assumption 6,

| (8¢) - () gl
=3~ (19;1165(7) - ©;(r0)1)
jeEH

<Z|9]\Supma><||@( ) = 6;(10) |1

jEH TET

<\fsupma}>;||9( 7) = ©;(70)llx

TET
o v155)
n

1 (8¢) - () gl
=13 (©,(7) — ©;(r0)) gl

jEH
<max||@ (7o ||2Z|93
jeEH
<\/ﬁsupmax||@ (1) —©,(10)|l2
reT?

o)

|9'8(7)5(7)2uO(7)'g = ¢'O(F)2(7)2uO(7) 9|

Furthermore,

< 1Sl (83) — O)) gl +26(5,co, T, %] (8(7) ~ O()) gll25(5,co, T ©) g2
< o, (Vi) +o, (Vi)

- Op (\/% 107ng)

Finally, by Assumption 6 (ii),

() 0 o) 0 ) )

O

Lemma 23. Suppose that Assumptionl to 6 be satisfied, conditional on events A1, Aq, Asg, Ay, A5,
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then
19'O(F)E(7)2uO(7)' g — §'O(10)Z(70)2uO(10) 9| = 0p(1).

Proof of Lemma 25.

19'0(7)%(7)2u0(7)'g = 9'O(70) E(70) 22O (70) g

= 1O(7)E(7)uO(7) = O(70)X(7)2uO(7) + g'O(70)X(7)2uO(7)'g — 9'O(70)5(7)2uO(70)"g
+9'0(70)2(7)2uO(70)"9 — 9'O(70)2(70) 24O (70)"g|

9'O(F)Z(7)2u®(7)'g — 9'O(10)X(7)2uO(7) 9l + 19O (70)E(T)2uO(7)'g — §'O(70) X(7)2u©(70) gl oo
+9'0(70)X(7)2uO(70)"g — 9'0(70)X(70)2uO(70) 9]

IN

To prove this lemma, we need prove the followings
19'O(F)Z(7)2uO(7)'g — g'O(70) 2(7)2uO(7) g| = 0p(1)

|g/®(7—0)2(7ﬁ)wu®(7ﬁ)/g - QIG(TO)Z(%)ZU,@(TO)IQ‘ = 017(1)

19'0(70)2(7)2uO(70)' g — §'O(70)2(70)2uO(70) 9| = 0p(1)
Firstly, since ©(7) is sysmetric,||O(7) gll1 = ||¢g’O(7)]|1, also ||2(7)zu]|oo is bounded by Assumption
1, combine with (7.87)

9'O(F)E(7)2u®(7)' g — 9'O(10)X(7)2uO(7) g
19" (©(7) = ©(70)) 11 [2(7)2uO () gl oo
9" (0(7) = O(70)) 1 [X(7)wullo[lg"O (7)1
Oy (\fssologp) p( h§)
o (e

INIA A

Secondly, as [|g' (O(7) — ©(m0)) [l = [ (©(7) = ©(70))" gllx

19'0(70)E(7)2uO(7)'g — 9'O(70)5(7)2uO(70) 9|
19O IE(F)zulloll (B(F) = O(70)) gllx
_ 0, (h\/?sol"%)

IN
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Note,

Y(T)eu — B(70)zu
= E[Xi(7)X((7)u] — B [X;(10)X](70)u;]
= EXi(7)X|(7) - Xi(10)X}(70)] E [uf]
= (2(7) = 2(10)) B [u?]
= E[X;X]]E [u2]|r0 — 7]

K3

and

I2(F)zu = E(0)zulloe = 15(7) = Z(70) o E [u?] = Oy ( lofip)

19'0(70)E(7)2uO(70)'g — 9'O(70)X(70)2u O (10)'9]
19"©(70) (2(7)zu — X(70)2u) ©(70)' 9]
19'0(70) IF12(F)au — 2(70)wullo
Oy (h5) Oy (5022 ) = O, (hso'22)

INIA

1 1 1
19'0()S(7)240(7) g—9'©(70) 5(10)2uO(70)'g| = O, (h\/;?’so 2l )+op <hsso 22l ) =0, (h@so ij)

Combine with Lemma 22

19'O(F)E(#)2uB(7) 9= O(70)(70)2uO(70)'g < oy sy | 222 )+0 (mF sok’gp> p<h,/8383 k’if’)

O

Proof of Theorem 3 Case II: fixed threshold. We show that the ratio

(7.90) t=

is asymptotically standard normal. First, note that by (4.11) one can write

t =11 +to,
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ty = —— — and
VIORE(#)..6(7)g
(DX () — g'O(m)X (1)U)/ /n'/2 + ¢ O () (X! ()X (r0) — X' (2)X())ao/n'/2 — g A(7)

VIORE(#)..0(7)g

It suffices to show that ¢; is asymptotically standard normal and t2 = 0p(1).
Step 1.
Step 1.1) This step, referring to the proof detailed in Step 1.1 for the proof of Theorem 3 for the

’ ’ /
no-threshold case, shows that in the fixed-threshold case, t] = —% O (o)X (ro)U/m /?
\/9’6(70)2(70)3671,@(70)9

is asymptotically
standard normal.

Step 1.2). Let
= g/G(TO)XI(TO)U/nl/Q

IR (7))

19'6(10)X (70)U/n'/? — g'©(r0)X (o) U /n'/?|
<llg’ (6(0) = ©(70)) I IX (70)U/n' %]
Conditional on A, Ay, A3 and A4 and by Lemma 2

~0,(VEsYIER)0,(1/logp) = O,(Vis5E) = o,(1)

, g (@(TO)X’(TO)U/n1/2 - @(TO)X’(TO)U/n1/2>
‘t1 —t|=

(1) ——
VIOHE()..00)g

<op
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~

(V 7O(+)5(7)0u6(7)'g — ¢g’e<m>z<m>me<m>/g) 9/0(r0) X (o)u/n/?

1t 4] = _
VIO E(H)uB () g1/ 7O M) E(70)2aO(70)'g
) (g’@(ﬂi(f) é( Vg~ 40(70)5(7)20(70) g ) §O(m) X! (m)u/n'?
\/9/@(%)2(%) 7)'93/9'0(10)2(70)2u© (\/9’@ )'g+/9'6(19) (To)qu(To)'g)
. \g'é(ﬂ 2(7)2uO(7)'g — 4'O(10) 5(10)2uO(10) g9’ Om) X (ro)uy/n
\/9’(:)(?')53(%) 7)'91/9'0(70)%(70) 240 (\/9’@ )9 ++/9'0(10) (TO):vu@(TO)/g)
(h\/sos?’\/ 10gp> Vhslogp)
<
\/g/@(%)i(%)zu@(%)/g\/9/6(7_0 7_0 ru (\/9/9 g + \/g @ TO (TO)xue(TO)/g)
_ Op ((hsof 21(3/@)
9O(#)%(7)2u®(7) 91/9O(70)S(70) 2 (W@ #g+/90(m) (To)xu@(To)’g)
- (1)
g/é(%)i(%) é g\/g/@ 7-0 7—0 xu (\/g/@ 9 + \/g/@ 7-0 (TO)qu)(TO)/g)
by Lemma 23.

Then combine the above two,
[t1 —t1] < 0p(1)
Step 2. By Lemma 20, 21, and 18,

1, = S OEX A — OrX (V) + 5 O(F)(X <T>X< ) = X(F)X(F))ao/n'2 — g AG) _ ).

\/g’@ (7) m(:)

Step 3. Finally, by Slutsky’s theorem

t=o0,(1) + ) % N(0,1).
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Therefore Lemma 23 implies that

(7.91) sup  |O(7)2u(7)O(7) — O(70)Eau(10)0 (10)| = 0,(1)
0406.41(5?(30)

where
AP (s0) = {ag € R? | fJag|loe < C, M(ag) < 50,80 # 0} .

Proof of Theorem 4 . For € > 0, define

a0 €Bey (s0)

Fin = { sup  [g'A(7)] < 6}

>

9OFE(F):0()g

7OFE(F)OF)g

-7:2,n = { sup

ag€Be, (50)

<<}

Fan = { sup |g/C:)(?)X'(7A')U/n1/2 —dORX' (AU /n'?| < 6}

ap€Be (s0)

Fin = sup g0 (X ()X (10) — X' (7)X(7))ao/n?| < &
ag EAE? (s0)

Fsn = sup |/ (OFH)X'(F)U — O(1) X (10)U) //n*/?| < &
aoeA§§>(so)

Fom=14 sup |g'0(r0)X (10)U/n"? — g'O(70) X' (r0)U/n'/?| < &
aoEA%)(so)

oY $(7 Q=)
o | £OEELEG

-1l <e
aocal?) (o) |9 O(0)E(10)2uO(70)'g

Applying Lemma 15 (and 18), 17, 2,21, 20, 19, and 23, respectively, we observe that the proba-
bilities of these sets all approach one. Thus for every ¢t € R,
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(7.92)
P{ Vg alF) o) _ t} o)

9O(7)S(7)euO(7)g

P {5 £ 0} P { 9'O(10) X/ (1)U//n'/* — ¢ A(#) + g (O(F)X/(F)U = O(10) X (10)U) /n'/? + ¢'O () (X' ()X (10) — X' (7)X (7))o /n/? < t}

<

90(7)E(7):uO(7)'g

0} { JORX R/ — g AG) _ t} o)

9O(7)E(7)0uO(7)'g

<P {5 £ 0}

P { g'0(m0)X!(10)U/ /n/? — g A(#) + ¢'(O(FH)X/(F)U — O(r0)X!(r0)U) /n/? + g'O(7) (X' (#)X(m0) — X/ (#)X (7)) /n*/? < t} —&(t)
70(7)5(7)euO(7)g

+ P {d = 0}

. {g’é(?)x'@)wn” —gA0 t} —2()
9O E(F)2uO(7) g

where P {dp = 0} +P{dy # 0} = 1, and these probabilities are between 0 and 1. Let’s first consider
the term in the final inequality of (7.92) for the case without a threshold

P{ OEX AU/n2 —gA¢) _ t} ot
VIO@E(),.0()g
SP {g'émxxﬂv/nl“: JAR)
VIOHE(#).6(7)g

(7.93)

)

S t7'F1,TL7‘F2,TL7f3,n} +P{]:1C,n UJ:ZC,n Uf?in} .

There exists a positive constant D such that

/AAX/A 1/2 _ o/ A(F
P{g @(T> (T)U/n J (T) S t7F1,7L7f2,na‘F3,n}

\/g’(:) ) (7)euO(7)'g
(A)U/n"? — g A() \/g’(:)(?)fi(?)m(:)(ﬂ
{ 60—\ 7ePSF)..66) fl”’fmfgn}
(7.94) -
7)X'(7)U/n'/? ete
P
= {\/9’@ (T)2(7)2.0(7)'g SHlte)+ VIOF Z(aw@(?)/g}

= 1/2
<P HX'(T)U/n
\/g/@ E /T\)ru@( )
<O(t(l4+¢)+ Die) + ¢

t(l + E) + D1€}

where the last inequality is derived from the proof of Theorem 3, where we established the asymptotic
9O X' (R)U/n/?

L= — . Therefore, since the right-hand sides in (7.94) do not depend on
V9'OF)Z(7)2uO(7)'g

normality of
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g, we obtain

(7.95)
1/2 _ A 'Q(3\ X/ (5 1/2
wp Bl IOEX (T)U/n 9N r m ma b { gOF)X FU/n/ St(HeHDﬁ}'
aoe.Ax))(so) \/9’@ 3 T ( )’g \/g/@(T)Z(T)wu@(T)Ig

The above arguments hold for all € > 0. By the continuity of ®(-), for any 1 > 0, we can choose &

to be sufficiently small and conclude that

do  ap plIOOXEUM - gaE

— N — Sta]:l,nyj:Z,n»]:S,n Sq)(t)+77+57
a0eAD (s0) V9OF)E(7),.0(7)g

Next, considering that ¢’O(7)X(7).,O(7)'g is bounded away from zero, there exists

/éAX/AU /2 _ o/ A(F
plIOOXOUNT —gA®) _y 7w F

\/g’@ ) (7)euO(7)'g
/ 1/2 _ ING 1Q (2 (7 Q
g @ T U/,"j — (T) S t\/g,e(z) (I)IUG(T) ]:1 n7]:2 n7-7:3 n
T (T)IUG(T)IQ g @(T)E(T)xu@(7>
(7.97) .
X/ 1/2
>P Z e P
\/g’@ )E 7)2u0(7)g VIOM)E(T)20T) g
/ A 1/2
>P ZU/”A <t(l—e)— Die§ +P{F1 N Fa N Fsn} — 1
\/9’6 )X (7) 2O (T) g
@(t 1—8 E)—€+P{f17nﬂf27nﬁf37n}—1,

f _9O@X (RU/n"2
VIORZ(F)eu®(F) g
As P{F1n, N Fo,, N F3,} can be made arbitrarily close to one by choosing n sufficiently large

where the last inequality arises from the asymptotic normality o

and e sufficiently small, we have

(7.98)  inf P gOF)X (7)U/n'/? — g'A(#)

(1 ~ n — S t;flmy«/ré,naf?:,n Z é(t(l B E) - DIE) -
QOGAZ())(So) \/g,@(’%)z(’f_)xue(%)/g

By the continuity of ®(-), for any n > 0, we can choose ¢ to be sufficiently small and conclude
that

'Q (7 (= 1/2 ) ~
(7.99) inf P g 9(7)33 (T)lAf/n s A(%)
wede |\ gB(H)8(7)nB?) g

Sta}—l,n7]:2,na-73,n Zé(t) 777726
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Combining (7.96) and (7.99), since sup 0eAD 0P {F{, UFs, UF5,} =0, we obtain

(7.100) sup vny' (Cf( T)— — ) <tp—d(t) —0.
aOGAg(l))(So \/g @ Z mu@(%),g

Considering the term in the final inequality of (7.92) for the case with a fixed threshold

(7.101)
P { §'0(10) X/ (10)U//n'/? — ¢ A7) + ¢ (O(F)X'(#)U — O(r0) X (10)U) /n'/? + ¢/ O(7) (X! (7) X (70) — X'(#)X(7))ag /n/? - t} o)
VIOREF..0()g
S]P,{a’é(m>X’<m)U//n’/2—g’A<%)+g’(©(%> (1)U = O(70)X/(10)U) /n'/ + g'6(#) (X' ()X (7o) — X' (F)X (7))o /n'/? < 90ROy Fims Fams Foms Fom f”}

VIO )2 (10)2uO(10) g "V 9'0(10)%(70)2uO(10)'g
AP{FT L UFG, U UFG UFE )
Since ¢'O(19)X(70) 24O (70)’g does not depend on «p and is bounded away from zero, there exists

a positive constant Dy such that

(7.102)
¢O(m)X (1)U/ /0" — ¢ A7) + ¢ (O(F)X(F)U — O(m) X/ () U) /02 + ' O(7)(X(7)X(m0) — X' (7)X (7))o /n"/> 9O(7)(7):u0(7)g
P{ VIO E(M0)euO(0)'g = g'(—)(rom(ro)we(ro)/g‘fl‘"'f”'ﬁ'"’fﬁ'"ﬁn}
- { g O(TO)X/(TO)L//nI/Z <+ e }
V9'O(70)%(70)2u©(10)’ 9'0(70)X(70)2uO(70)"g

- { g (>(To)X’(To)U//n”2

76005 () 00T *“HEHDQS}

Therefore, since the right-hand sides in (7.102) do not depend on «g, we obtain

(7.103)

sup
€A (s0)

- { 96(m)X (70)U/ /n!/?
B 9'0(70)2(70)2uO(70)'g

P { 9OMX (m)U/ /0" ~ g AF) + g/ (OF)X! (U — B(r0) X' (m)U)/n'/* + ¢ 6(F) (X' ()X () = X' (D)X ())ao/n'? _ | 4OF) L))y

Funs Fuons Fsns Foms From
§OL0 MmOl =\ 8Ty (7 }

<t(l4e)+ Dzs}

£ 9’6 (1)X/ (10)U//n/?
V9'0(170)5(10)2uO(10) g

In the proof of Theorem 3, we established the asymptotic normality o .Then,
for sufficiently large n,

(7.104)

sup
a0 €A (s0)

<O(t(1+¢e) + Do) + &

P §'0(10) X/ (10)U/[n'/? — ¢ A(#) + ¢ (O(F)X(:)U — O(r0) X! (10)U) /n'/? + g'O(#) (X! ()X (10) — X'(#)X(#))ag/n/? < 70(F)2(7),0(F) g
9'0(10)%(70)2uO(70)'g =V 90(10)(70)2uO(10)'g

Fin, Fans -F‘S,n:-FG.n‘FZn}

The above arguments hold for all € > 0. By the continuity of &(-), for any n > 0, we can choose € to
be sufficiently small and conclude that

(7.105)

sp P 9O(r0)X(10)U/ [n'/? = ¢ A7) + ' (O(H)X' (1)U — O(TO)X/ T0)U)/n'/? + ¢'O(F)(X'(H)X(r0) — X'(F)X () o /2 <
\/!7'0(7'0 n) (Tn)/. -

G GMCIGY)
7'0(0) () O(m)'”

s Fins Fans Fons fﬁb‘}—7l}

a0 AP (s0)

<®(t)+n+e.

Next, considering that ¢'©(79)X(79).©(70)’g does not depend on a and is bounded away from zero,

there exists
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(7.106)
gO(m)X! (r)U//n'/? — ¢ A(#) + ¢ (ODX (AU — O(r) X! ()U) /02 + ¢'O(F) (X' (F)X(10) — X'(A)X(7))awo/n"/> _
9'0(70)%(70)2uO(70)'g B

/ 1/2 4
sp{ IOX (0)U//n” U/ /n <149 - R FinFonFonFin
9'0(70)%(70) 20O (70)" 9'0(10)2(70) 240 (10)'g

)
)ou
zu»{ g0(m)X 'm;v//nl/?

g ,fl.mf,m.,ﬁr,,n,fﬁ.mfm}
T0)'9

< {(l4e)—Daep +P{F1 N Fan N Fsn N Fon N Frn}—1
7O (0O ) 2} Franss ‘ 7}

As the right-hand sides in the above display do not depend on o, and P {F1,, N Fan N F5,n N Fo.n N Frn}
can be made arbitrarily close to one by choosing n sufficiently large and ¢ sufficiently small, we have

(7.107)

P)E(7)eB(?)g
\/g’() (70)2(70) 24O (10) g - 9'0(10)2(70)2uO(10)'g’

inf
(2)
a0 Ay (s0)

>P {—g/é(TU)X/(TO)U//nl/Z <t(l—eg)— D26} —e.
9'0(70)2(70)240(70)'g

. {g'é<m>X'<m>U//n“2—g'A<f>+g'<0< PX () = O(r) X! (r)U) /' + ' O(F) (X' (7)X (o) = X' ()X (Pao/n'* _ [ 90 o P m}

9'6(1)X/ (10)U//n/? )
\/9’9 (70)3(70)2u©(70)'g

In the proof of Theorem 3, we established the asymptotic normality of

for sufficiently large n,

(7.108)
wf pd OMX U/~ g AR + g (BEHX (DU — O(r)X (m)U)/n' + g OF) (X' ()X (r) = X' (X (F)ao/nt/? _, | 9ODE@nOF g o o o o
e AR (o) TOm)IE(M).O(r0) g =V O] S(m0)eO(ro)g ™ T AT TR

>®(t(1 —€) — Dae) — ¢

By the continuity of ®(-), for any > 0, we can choose ¢ to be sufficiently small and conclude that

(7.109)
, §O()X ()U/ /2 — ¢ A(F) + g (B(RX (U — B() X (r)U) /2 + g OF) (X' ()X () — X' (DX(Pao/n'? _ | gB@EF)0F)g
m,eifiszP{ VIO (70)uO(r0) g =N 70(m)S(r0)uO(royg T T Fom Fom 7. }
>P(t) —n — 2

Combining (7.105) and (7.109), since SUP, 4@ (o) P {Fe  UF§, UFE, UFS  UFE, L — 0 we
¢ : : : : :

obtain

(7.110) sup Vg (a(T) A) <
aoeA§§><sO> VIOFH)E(7),.0(7)g

Thus (7.92) yields

(7.111) sup
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To see (4.33),

]P’{Ozéj) ¢ [a(j)(?) _ Zl_a/Qm a(j)(?) + Zl_a/QU(T)j:| }

N Vn
~() (= _ ()
p { V@7 — af’) >Zl_a/2}

o)
(7.112) () (2 ) a0 F) — oW
b {ﬁ(a (7) — af >>Zl_a/2}w {\/ﬁ(a (7)o ><_Zl_a/2}

o) ()

a0 (7) — oW ~() (=) _ @)
Slp{\/ﬁ(a ;T) o) Szl—a/2}+ﬂb{\/ﬁ(a (7) —ag ) < Z1—a/2}

() o)

Thus, taking the supremum over sup,, ¢z 10 (50) and letting n tend to infinity yields an inequality in
(4.33) via (4.32).
Finally turn to (4.34), by Lemma 17 and 23 we know

sup 19'0(F)E(7)2uO(F)' g — ' O(F)B(7)2uOF) g| = 0,(1),
ao€ Ay (so)

and
sup 19'O(F)E(7)0uO(7)'g — 6'O(10) 2 (70) 2O (70) 9| = 0,(1).
OzoE-A[i (SO)

Hence, choosing g = e; and ¢umax(O(7))) = 1/¢min(X(7)) for 7 € T,

(7.113)

= sup 26Dz _opm/Vn

sup  diam [a@(?) — Z1_q/2 J\/%j ,ﬁ(j)(?) + Z1—a)2 p
aoeA@z (s0)

ag E.A;;) (s0)

=9 ( sup \/e;@(?)E(?)m@(?)'ej + Op(l)) Zl—a/2/\/ﬁ

o EAE;) (SO)

<2 < Qsmax(@(?)) )) + Op(]-)) Zl—a/Q/\/ﬁ = Op(l/\/ﬁ)

_
d)min (Z(?

(7.114)

a(7);

A (F) + 2100 = s 20Vzop/Vn

sup  diam [a@(?) — 21—a/2
aoEAéz)(so)

T4} EA;? (50)

=2 s /e O()S(r0)euO (o) es + 0y(1) | 21oap/VR
aoEAéi)(so)

<2 (Vo O]+ 0,(1)) 51-0s2/ Vi = 01/ V)

¢min (E
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Therefore, (4.34) is proven. O

7.8 Time Series Model

While we develop the theory in the context of independent data, we also explain how the theory

remains applicable in time series data models with certain assumptions modified.

Assumption 7. (i){X;,U;,Q;}._, are sequences of (strictly) stationary and ergodic random vari-
ables. Furthermore, marginal distribution of {Q;};—, is uniform (0,1) and {U;}]_,. and {X;}!_,
are independent. (ii)For the strong mizing variables X;, U;: a(i) > exp(—Ci™), for a positive
constant ro > 0. (iii) There exists positive constants ri, ro,and another set of positive constants
b1,b2,81, s2 > 0, and for i = 1,--- ,n, and j = 1,--- ,p P{|U;| > s1} < exp(—(s1/b1)™) and
IP{|XZ-(j)| > 82} < exp(—(s2/b2)"™2) (iv)There exists 0 < v; < 1 such that 47" = 3r;' 4+ 15! and
37“2_1 +7”51 > 1. (v)There exist positive constants r3 and another set of positive constants bz, s3 > 0.
Fori=1,--- n,andj=1,---p, P{‘Uz(j” > 83} < exp (—(s3/b3)"™), and the same 1 as in (iv)
such that 3ry' + 1yt > 1.

Assumption 7 is regarded as a modification of Assumption 1, while keeping other assumptions
unchanged. It is noteworthy that stationary GARCH models with finite second moments and con-
tinuous error distributions, as well as causal ARMA processes with continuous error distributions,
and a specific class of stationary Markov chains satisfy our Assumptions 7. Similar assumptions are
discussed in Chang et al. (2018) and Caner et al. (2023).

The following is Lemma A.3(i) of Fan et al. (2011) under Assumption 7:

JIogp 1
IP’{ max max |~ ZXU)X(” Bl(xPx0)| > oY eP } = 0(=),

1<j<p1<i<p n n
<j<p =p i—1 \/>

The following is Lemma B.1(ii) of Fan et al. (2011) under Assumption 7:

1}»{ max \fZUX(J)| > c*/@} o)
1<j<p'm vn p2

The proof of Lemma A.3(i) and Lemma B.1(ii) in Fan et al. (2011) relies on the maximal in-
equality presented in Lemma A.2 of the same reference, attributed to Theorem 1 in Merlevede et al.
(2011).

Apply the same techniques employed in the proofs uniformly over 7 € T, incorporating an

additional layer as specified by (7.15), we can show

vn

) Viegnp | 1
P{lr?]aé{pilé%nZUX HQ; <7} >C—F— }—O( )
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- (4) 5D ) _ (7)) x (O ) >0y e P
ilelglrg?%(plrgl%xp'n ZXZ XiHQi <7} - BT X,"HQi <7} 2 C Vn n?p?

=1

By substituting the maximal inequality from Lemma A.2 in Fan et al. (2011), under Assumption
7, in place of the inequalities from Lemma E.1 and E.2 of Chernozhukov et al. (2017) used in all
previous proofs, we can establish that P{A;}, P{As}, P{As}, P{A4}, and P{A5} approach 1 for all
sufficiently large n and p > n. These results imply that our framework encompasses the time series

data threshold regression model.

7.9 Threshold selection consistency by thresholding

In the case of a linear model, van de Geer et al. (2014) has already addressed desparsified LASSO
estimation for uniformly valid confidence bands. However, when dealing with a well-identified and
discontinuous threshold effect, we need to propose a desparsified LASSO. It is crucial to determine
whether a threshold is present or absent, even in the context of high-dimensional threshold models
with random regressors. But econometricians do not have prior knowledge of whether a threshold
is present. Precise variable selection becomes crucial. As pointed out by Callot et al. (2017), a
sup-norm bound provides more accurate variable selection results for the thresholded scaled LASSO
compared to results based on ¢; bounds. The latter tends to be larger due to the presence of the
unknown sparsity sg.Up to this point, we have established oracle inequalities for the prediction norm
and £; errors of our estimates. Before delving into the desparsification of the estimator for test and
confidence interval construction, we address the threshold detection issue.

The situation where dg = 0 is non-trivial since the consistency of an estimator does not provide

selection consistency. Suppose dg = 0, Theorem 1 shows that

for each j € {1,---p}. However, this does not imply that we will correctly estimate zero coefficients

as zero. The consistency implies that for all € > 0,

P {|S<j>(?)| > e} =0
But as we need to control the correct model, we instead require
(7.115) i {SU)(?) - o} Sl

(7.115) states that, with a consistent estimator, selection consistency comes from (7.115). In
particular, LASSO has a tendency to overshoot the correct model, finding more nonzero coefficients
than the true number. Strictly speaking, if the estimated number of nonzero coefficients is 5, then in
finite samples LASSO has a tendency to obtain § > sg. To our scaled threshold model, the LASSO
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estimator defined in (2.4) may be much more over-parameterized in that 7 and § are added to 8 as
parameters.

We next turn to variable selection by means of thresholding. For this purpose, we follow Callot
et al. (2017) to define the thresholded LASSO estimator®as

sU@), i |8V(F)| > H,

(7.116) 60 (7) = .
0, if 09 (7)] < H.

where H is the threshold determining whether a coefficient should be classified as zero or nonzero
and 80 )(7) are elements of the LASSO estimator defined by (2.4). In particular, we shall see that

choosing H = 2C'\ results in consistent model selection.

Theorem 5 (Threshold selection consistency). Let Assumptions 1-4 hold and assume that min;e (s, \(5(()j)\ >

3C\. ThenVe > 0, there exists a C such that for H = 2C\ = 2C 10%, P {J(éo) = J(S(?))} >1-—c

as n — o0.

Theorem 5 is derived from Theorem 4 in Callot et al. (2017). The discussion on choosing the
thresholding parameter C' through the Bayesian Information Criterion (BIC) is omitted, as it is
similarly implemented in the simulation section of Callot et al. (2017). Theorem 5 outlines sufficient
conditions for the thresholded LASSO to identify the correct sparsity pattern of dg. It is essential
to highlight that these conditions require the absolute value of the smallest non-zero coefficient to
be at least of the order of the /. -rate of convergence of @ to «y.

There exists a trade-off in deciding whether to include this assumption. If included, the con-
struction of confidence bands for parameters doesn’t yield uniformly valid results over any ¢y-ball
B(sg), as the result relies on min ¢ s(s,) |(5(()j )| > 3C\ for validity extends beyond the complement of
every such {y-ball.

On the other hand, without this assumption, the condition 5(?) # 0 is sufficient to imply the
true model is nonlinear. However, the condition §(7) = 0 is not sufficient to imply the true model is

linear.

7.10 Asymptotic Distribution of Threshold Parameter

To develop the asymptotic properties of the threshold parameter estimator, we rely on the empirical
process results introduced by Hansen (2000) and adopt the shrinking-threshold-effect framework. In
this framework, the threshold effect diminishes as the sample size tends to infinity. By constructing

a likelihood ratio (LR) statistic, we can derive inferences regarding the threshold parameter.

Assumption 8. (i) For some fized &5 < 0o and 0 < ¢ < %, let 6o = n~?8; and n=%||55 |1 > 0.
(ii) E [XZ-X{UﬂQz‘ = ’7'] is continuous and bounded when T is in a neighborhood of .

5Note that since we are only interested in finding out whether dp is nonzero or not, one can simply threshold 5.
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(iii) For any n >0 and 71,72 € T such that wpal,

(7.117) sup ZUX o [1(Q; <10)—1(Q; <7)]| < W,
|7—ro|<n | T
(7.118) sup  sup — ‘X(])X(l)‘ 1(Qi <70)—1(Q; <7)| <C5(n)7,

1<4,1<p |7—70|<n T

_AW®

(7.119) sup  sup [|dollx ZUX@ (Qi <70) —1(Qs <7)]| < :
1<5,1<p |[T—710|<n 2
whereO<<p< >12¢
2
(iv) 50, @, @, and p are such that —5SE25]12 = 0p(1), \/ZEE = 0,(1), 60]1412£2 = 0,(1).

Assumption 8 is an extension of the fixed dimension case in the literature when working with a
fixed regressor design(e.g., Hansen (2000)). Assumption 8 (i) has been widely used in the threshold
model to obtain a tractable asymptotic distribution for the least squares estimator of 7(e.g., Hansen
(2000)) The re-normalization is to force dy to be small, reducing the information in the sample
concerning the threshold and hence slowing down the rate of convergence of the threshold estimate.
This assumption need not be viewed as very restrictive since the rate at which Jy decreases to zero
can be set quite low. It does suggest, however, that the asymptotic approximation is more likely to
provide good approximations when dq is small relative to the case where dq is large. The unknown
parameter 0 < ¢ < % reflects the difficulty of estimating and affects the identification and estimation
of the change point. Both the rate of convergence and the asymptotic distribution depend on. In
Assumption 8 (iii), (7.119) implies (7.117).

The following arguments are parallel to those in Lemma 11, Lemma 13, Theorem 1, and Theorem

2 of Hansen (2000). To describe the asymptotic distribution, we introduce additional notations. For

=807

any v € ¥, an arbitrary compact set, let
Bn(v) = 0 [Sa(@(7), 70) + AID(7)AF) ] = [Sn(@(F), 70+ —52) + A [ Dlro + —5
Let © = n'=2%(7 — 79), we can then derive the process using (2.4)

(7.120)
argmax, A, (v)
=argmax, Sy (&(7), 70) + A [D(r0)a(7)ll; = Sn(@(7), 70 + =

~

:U7

v o~
290 )\HD(T()—FW)Q(T)Hl

as S, (a@(7),T) + A ||D(7)a(7)||; represents the minimum over 7 € T.
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An(v)

=37 (X (70 + —75) = X (7)) (X (0 + ——5
+23(7) (X (0 + —5) = X (70)) (X (70 + —=52)(B(F) — o)
+n | D(ro + —52)a ()| —nA ID(r)a?)],

v
(7.121) =0o(X (10 + e

~2(3(7) = 60)' (X (10 + —=5) = X (0))'U

) = X (70))/ X (70 + —=5)80 — 205(X (70 + ——52) = X(m0))'U

i@ﬂﬂm+—1@—xmwxm+—ia@®—m>

-~

+(6(7) +80) (X (70 + —5) = X (70))' X (70 + =) (3(7) — o)
0 [D(ro + 55 )a rm—nwnmmvm

Regarding the second term in the last equation in (7.121), we introduce additional notations. Let
1-2¢

Ri(v) = Y22 300 06" (X (70 + 5rtas) — Xi(10))Us and Vi (v) = 2= 3700 68" (Xi (70 + rtas) —
X;(70))(Xi(70 + =1%5) — Xi(70)) 65 U2 First, we show for any given v the convergence of the finite-

dimensional distributions of R, (v) to those of B(v). It suffices to show the first and second terms

in the last equation in (7.121) converge somewhere correspondingly, and then show the convergence
of A, (v).

Lemma 24. Under Assumption 1,2 and 8, for any v € ¥, a arbitrary compact set,
v * *
00 (X (70 + —=5;) = X(70))' X (70 + —=5;)% = 005 B [XiX{|Qs = 7] 6

and

R, (v) ~ B(v),

where B(v) can be written as \/5§'E [X; X!U2|Q; = 7] W (v), and W (v) is a standard Brownian

motion.

The notation R, (v) ~ B(v) defines a general concept of convergence in distribution introduced
by Dudley (1985).
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Proof. To show the first part of the lemma,

B [8(X (10 + —55) = X (70))/ X (70 + —5)

=0 [(X(r0 + ) X (10 + —52) — X(m) (X (1o + —1252)] 80

n1*2t,0 . v v *
= 50/E {X(To + W)IX(TO + m) - X(TO)/X(TO)} 4o
1 v
1-2 */ *
(7122) =n ‘P(SO l:nX(TO —+ ey 2@) X(TO =+ M) — X(TO)/X(TO)] 50
1 n
—nl=2e55 - ZXiX/ { (QZ <70+ - 2@) -1(Qi < To)} U?| &

—n' 25 B [XiX{|ro < Qi < 7o+ | 8
£>U5§/E [Xin'|Qi = T70) 0

as n — oQ.

(7.123)
B [55(X (0 + —5) = X () (X (7o + 22060 — Bl (X (m + —22) = X(70)) X (70 + )] |

—E :50 [X(TO n 1”%)')((70 n rf%) ~ E[X(10+ — —o5s) X (70 + 1”2¢)] — X (70)'X (o) +E[X(TO)'X(TO)H5O]2

2
<B (180 31,0 + 0 Xl +0) — B Xm0 +0) Kulro -+ 0)] o + |2 Ximo) Xilr) — B [X,(r0) Xi(r0)] ||oo}]

logp
020, (22)
where we used Lemma 6 in the last step. Combine the above with Markov’s inequality,
v *
o(X (0 + ey 250) X (7)) X (70 + - )50 5 08y B [ X X]|Q; = 0] 6.

Our proof proceeds by establishing the convergence of the finite-dimensional distributions of

R, (v) to those of B(v) for any given v, then extending that by showing the tightness of R, (v).

E[Va(v)]

i(s X005 [1(Qu< ot ) ~ 1@ <) U2

(7.124)

:;E{n

B0y B [ X X[UQ: = 7] &

"X X8 [1 (Qi <710+ n%@) 1(Qi < TO)] U2]
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(7.125)
E [Vn(v) — E[Va(0)]?

Z(s Xi X165 [1(Qs < mo) — 1(Qi < 7)) UZ —

Za X X105 11(Qs < 10) — 1(Qs < 7)) U?

n

— * * 1 * *
=n' 2¢E n ;6O/XiXi50 [1 (Qi < To) -1 (Qi < T)] UE - n ;%le‘Xf‘so [1 (Qi < To) -1 (Qi < T)] Ui2
1 n

2R 725 X X105 [1(Qi < m0) — 1(Qs < 7)]U Za X Xi05 [1(Qi < 70) = 1(Qi < 7)] UF

<=2 [|152)2 [H%Xi(fo +0) Xi(r0 +v) = E[Xi(70 +v)' Xi(10 + v)] oo + II%Xi(To)'Xz‘(To) — B [Xi(r0) Xi(70)] ”°°H

which establishes that V,,(v) 2 |v|63'E (X, X/U?|Q; = 7] 6 by Markov’s inequality.

Since {X;,U;, Qi}l 1s an independent and identically distributed sequence, E [R,(v)] = 0.
We conclude that R, (v) KA N(0,|v]0" E [X; X[U?|Q; = 7] &) for any fix v. This argument can be
extended to include any finite collection [v1, - - - vx], to yield the convergence of the finite-dimensional
distributions of R, (v) to those of B(v).

Then we show the tightness of R, (v). Fix n > 0 and set 7 = 79 +
8(7.117),

then by Assumption

nl 250)

sup  R,(v)-R,(v1) <  sup R,(v)-R,(0)+ sup R,(0)—R,(v1) < %)\nl_w(%_w[(ﬁ)w—%(\/ﬁ)w].

v1<v<vi+n v1<v<vi+n v1<v<vi+n

Thus, P{sup,, <,<y, +y [Bn(v) — Rn(v1)] > Anl=2=(1=20) (/1)@ } 5 0, as n — oo. So Ry (v) is
tight.
As R, (v) is tight, we conclude that R, (v) ~> B(v). O

In next part, we present an auxiliary technical lemma and its proof. We start with some matrix

norm inequalities. Let A be a generic ¢ X p matrix and z a p X 1 vector and z a ¢ x 1 vector.

Lemma 25.
2’ Az < lz]1 | All o]zl

Proof. Observe that
2’ Az < [lz]l1llAzlloo < [l2ll1[[Allos 2]l

by Holder’s inequality. O
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Lemma 26. Under Assumption 1,2 and 8, for any v € ¥,on any compact set,

Ap(v) ~ A(v),

where A(v) = —|v|6§'E [X; X[|Qi = T0] 6§ + 2\/66"E [(X:X!U2|Q; = 7] W (v), and W (v) is a stan-
dard Brownian motion.

Proof. Rearranging (7.121), yields

(7.126) A (v) :56(X(To+7;’ﬁ)fX(To))X(TO+ Yo 2Ra(v) + T (0),
where

T(v) = ~26(7) ~ 80) (X (70 + ——5) = X (m)U
(7.127) 257 (X (m+ 555) = X () X (10 + W)(B(?)—Aﬂo)

+((7) +00)' (X (To + %) — X(10))X (10 + —55) (%) — &)

+n [D(r + —Z52)a ()| —nA ID(ro)a (P,
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It suffices to show T (v) = 0. Note that by triangle inequality and Hélder’s inequality
v ~ ~
nA [Diro + —Z5)a(@)| — mAID(r)a(?),

<nA\ ‘(D(To + nlvﬁ) - D(TO)) a(?)H1

p
=AY (IX9 (70 + =52 o = 1X D (70) ) 39 (7)

j=1
P . v . ~ .
<nA |y X9 (mo + —=5;) = X (1) [0 (7)
j=1

<nA < max HX(]) To + 7%) X (1)

snh V n1 29" H5

<nA (7117299) ([I60ll, + CsoA)

e,

(7.128)

<[ (=)= (02 1185, + Cso)

v
n1—2ga
<Cv?< \/@Hém‘l + so logp )
B \/n(1—260)(w—1) \/n(1_2¥’)w

_0 < Viogp |5l sologp
g p +
Vna—29m-1) ' \/pi-29)=

where the last inequality is by Assumption 8 (7.118), Theorem 1 or 2.
Note that by Holder’s inequality and Assumption 8 (7.119)

-~

2(3(7) = 8o) (X (ro + —=5) = X (1)U

<2||6(7) = doll1 sup sup
1<j<p [T—70|< 1255

~ Ay 52 )7
<[|6(7) — 50”1717”50”2:
sologp ( v )=
- n‘“’Hé*Hl n'=2¢
so logp

||5*|| Vn(l—2p)w—2w

ZUX(]) (Qi < 70) —1(Qs < 7)]

=1

(7.129)

so logp
||§*|| Vn(l—2¢p)w—2w=
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By Lemma 25 and Assumption 8 (7.118)

28(7) (X (0 + —12) = X(70)) X (70 + — ) (B(7) — o)

~

=2(3(7)’ = 8 + 8) (X (0 + —=5) = X(70))'X (70 + ——=5) (B(7) — o)

<2[|5(7) — Golls sup  sup ZX”X DQi < 70) = 1(Qi <D IBF) - Bollu
(7130) 1<]l<p\7' 7'0‘< wi—2¢ zw i=1
+2[0fl1 sup  sup ZXF’XE” [1(Qi < m0) = 1(Qi < M| IBF) - Bolls
1§j7lSp‘T—T0‘<n1+2w i=1
v o ,S0vlogp v o Sovlogp
SO "0 + O ™= 22
By Lemma 25 and Assumption 8 (7.118)
~ v v ~
(0(7) +60)" (X(m0 + —=5;) = X(To))X(To+7¢)'(5(T)—5o)
~ . v ~
=(0(7) = do +260)" (X (70 + —=5;) = X (1)) X (70 + —=5.)"(6(7) — do)
<||6(F) = do|l1 sup sup ZXU)X“) (Qi < 70) — 1(Qs < M| 18(F) = oll1
(7.131) 1<G,1<p |1=70l< 1235 |i=1
+2160]l1  sup sup ZX(])X(” (Qi < 70) — 1(Qs < D10 = o1
1<5,I<p |T—70|< 1 Qw i=1

v o ,Sovlogp v o Sovlogp
SO )T B + Ol "0 =0 22

Thus,Y(v) ~» 0. Combine with Lemma 24,

l|doll1-

Ay (v) ~ A(v).
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Lemma 27. Under Assumption 1,2 and 8,

72T — 1) a4 wT,

5/ E[X . X[U2|Qi=r]5;
<605'E[[X1~x4|czi:m]5]; 7 and T = argmaz, [—% + W(r)} .

W(r) is defined as a two-sided Brownian motion on the real line,

where w =

Wi(r), if r >0,
W(T):{ 0, il

Wa(r), if r <O.

where W1 (r) and Wa(r) are independent standard Brownian motions on [0,00).

Proof. By Theorem 2,

1
n' (=) < O g2 = 0,(1)

and by Lemma 26
Ay (V) ~ A(v).

W (v)

v

Next, as lim,_s o =0, limy| 00 A(v) = —00. Then the limit functional A(v) is continuous,
so Q(v) has a unique maximum. Therefore, all conditions of Theorem 2.7 of Kim and Pollard (1990)
are satisfied, which implies

n' 72 (T — 1) 4 argmax, Q(v).
oy B[ X X[UZ|Qi=7]5;
(85" B[X: X|Qi=T0]65)2

Making the change-of-variables v = r, we can re-write the asymptotic dis-

tribution as
6 B[ X X[U2|Q; = 7] 65

argmaXvQ(”) - (58,E [XZXHQZ = 7'0} 68)2

argmax,. {@ + W(r)]

O

To test hypothesis Hy : 7 = 79, a standard approach is to use the likelihood ratio statistic. Let
_ ,, Sa@(n),n)+AID(man) |, =S (@(7),7) - AD@Ea@) |,
LRy (1) =n NG ORENIGHGIN

Lemma 28. Under Assumption 1,2 and 8,

S E[X; XIU2|Qi=7]65
wheregz— 0 [ 'Lz‘ ]o

= _
T 5y B[XiX[|Qi=70] 0507 and A = max, [ o+ W(Tﬂ )

The distribution function of A is P{A <z} = (1 — 6_%)2.
Proof. We note that
NN
5.(@(7).7) = - 3" 0,7
@7 = 0

and
AIDE)aF)|, 5 o.
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(S (@(7),7) + AIDE@)a(T)}) LRn(70) — An(0)
(7.132) =Sn(@(70),70) + AD(70)a(70)[l; = Sn(@(7), 70) = AD(T)a(70)ll,
=(a(r0) — (7)) X (7o) X (0)(@(r0) — &(7)) * 0.
(1133) LRa(r) = — 2l 027D Supyinlv) 4, Supn2(v)

5.(@(7).7) + AMD@a@),  s.@m).7) + X\[D@Ea@l, o

by continuous mapping theorem. This limiting distribution equals

1 * * */ *
;Supv |:—’U(50/E [X: X!|Q; = 70] g + 2\/|v|(50 E[X;X[U2|Q; = 7] 6;W (v)
(7.134)

55"E [XiX(U2|Qi = T] a4 \r|
— 1% _ W _ 2A
55 E X X[|Qi = 10] 0502 { 2 " (”} ¢

To find the distribution function of A, note that

|| _ || Ir| _
o =15+ W] = 2 [l 4 WO supl Gl Wi | = 2 a)

which becomes the two-sided Brownian motion, as in Hansen (2000). [A;, A_] are iid exponential
random variables with distribution P{A; < z} =1 — e~ *. see Bhattacharya and Brockwell 1976.
Thus

2

P{A <z} =P{2max[A,A ] <z} =P{2A, < 2}P{2A_ <2} =(1—e 7)2
O

Our Likelihood ratio test corresponds to a modified version of the LR Test used in Hansen
(2000). The asymptotic distribution of Lemma 28 depends on the nuisance parameter ¢?, which can
be constructed by following Section 3.4 in Hansen (2000). We can then obtain a confidence interval

for 7.
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