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Abstract

This paper addresses statistical inference for high-dimensional threshold regression parame-
ters. I establish oracle inequalities for the scaled LASSO estimator proposed by Lee, Seo, and
Shin, assuming only non-subgaussian error terms and covariates. Subsequently, I desparsify (or
debias) the scaled LASSO estimator and derive the asymptotic distribution of tests involving
an increasing number of slope parameters in the sense of van de Geer et al. (2014). Utilizing
these results, I construct asymptotically valid confidence intervals for the components of the
threshold regression slope coefficients. To complement the asymptotic theory in this paper, I
conduct simulation studies to demonstrate the performance of my method in finite samples.
JEL classification: C12, C13, C24.

1 Introduction

Threshold models are a popular way to characterize nonlinearities in economic relationships. Hansen

(1996) and Hansen (2000) show how the least squares estimation of threshold models is possible and

feasible in fixed-dimensional settings, where the number of observations is much larger than the

number of variables. These two papers develop a non-standard asymptotic theory of inference which

allows for the construction of confidence intervals for the regression estimates, as well as testing of

hypotheses for the presence of a threshold. Later, Caner and Hansen (2004) developed instrumental

variable estimation techniques that allow for the covariates to be endogenous.

Let {(Yi, Xi, Qi) : i = 1, . . . , n} be a sample of independent observations such that

(1.1) Yi = X ′iβ0 +X ′iδ01{Qi < τ0}+ Ui, i = 1, . . . , n,

where for each i, Xi is a p×1 vector, Qi is a scalar, Ui is error terms, and 1{·} denotes the indicator

function. The scalar variable Qi is the threshold variable determining regime switching and τ0 is

the unknown threshold parameter.
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Threshold models have been well studied and applied in econometrics. In empirical studies,

threshold models have been used to investigate the non-linearity in the threshold effect of govern-

ment debt on economic output(e.g. Chudik et al. (2017), Afonso and Jalles (2013), Grennes et al.

(2010)). Recently, there has been a growing interest in panel threshold models. Seo and Shin (2016)

propose a two-step GMM estimator for the dynamic panel threshold model, which also allows for the

endogeneity of either the covariates or the threshold variables. Miao et al. (2020) study estimation

and inference in a panel threshold model in the presence of interactive fixed effects. Miao et al.

(2020) consider latent group structures in a panel threshold regression model, which allows for the

slope coefficients and threshold parameters to vary across individual units.

Interest in high-dimensional data has motivated much recent research on LASSO for threshold

regression. Lee et al. (2016) establish sparsity oracle inequalities for the prediction norm and esti-

mation error of the scaled LASSO applied to (1.1) in the case of fixed regressors and Gaussian error

terms for both the no threshold effect case and the threshold effect case. In their simulation section,

they also extended their results to random regressors with Gaussian errors. Callot et al. (2017)

develop sup-norm oracle inequalities for the estimation error of the LASSO of Lee et al. (2016).

Then they propose a thresholded scaled LASSO estimator based on the sup-norm bound to provide

threshold selection consistency or even model selection consistency.

Rapid technological advancements in data collection and processing have led to the analysis of

high-dimensional datasets, where the number of variables far exceeds the sample size. In such high-

dimensional settings, classical inferential procedures, such as maximum likelihood, are no longer

valid. Consequently, there is a pressing need to develop new principles, theories, and methods for

parameter estimation, hypothesis testing, and confidence intervals (CIs). Our approach is an adap-

tation of the desparsifying a LASSO estimator introduced in van de Geer et al. (2014). Specifically,

van de Geer et al. (2014) propose a desparsified LASSO estimator and construct asymptotically

valid confidence bands for the estimated parameter. Similar advancements were made in the pa-

pers by Zhang and Zhang (2014) and Javanmard and Montanari (2014). The idea is to remove the

bias introduced by shrinkage by desparsifying the estimator with a constructed approximate inverse

of a singular sample covariance matrix for estimating high-dimensional regression models. Two

approaches are widely used to construct the approximate inverse matrix: the nodewise regression

introduced by Meinshausen and Bühlmann (2006) and the CLIME estimator of Cai et al. (2011).

Much of the present work is devoted to solving the inference problem in a high-dimensional

linear model by desparsifying LASSO-type estimators to construct asymptotically valid confidence

bands for the parameters of interest. Caner and Kock (2018) propose the conservative LASSO

estimator allowing for non-identically distributed or non-sub-Gaussian error terms and develop the

asymptotic distribution of tests involving an increasing number of parameters. Gold et al. (2020)

propose a desparsified LASSO based on a two-stage least squares estimator with sub-Gaussian

data and homoskedastic errors for a high-dimensional instrumental variables regression. They allow

both the number of instruments and the number of regressors to be greater than the sample size.

Another relevant paper is by Caner and Kock (2019), which develops a desparsified GMM estimator

for estimating a high-dimensional instrumental variables regression that has many more endogenous
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regressors than observations. In their simulations, they compare it to the estimator in Gold et al.

(2020). Belloni et al. (2019) provide a new way of handling linear and nonlinear instrumental

variables regression as well as relaxing the sparsity assumption.

The present work, as introduced by Belloni et al. (2014) and Semenova et al. (2021), proposes

estimation methods for desparsification in treatment effects. In the context of generalized linear

models, relevant articles include those by Belloni et al. (2016) and Caner (2023). Additionally, it’s

worth noting that high-dimensional time series models are considered in papers by Adamek et al.

(2023). Moreover, high-dimensional panel data models are addressed in works by Kock (2016), Kock

and Tang (2019), and Chiang et al. (2023).

Overall, we contribute to the literature in two ways. Our primary contribution is to develop a

desparsified LASSO estimator for the threshold regression in the high-dimensional regime: p >> n—

that is, if p, the number of variables is much larger than n, the number of observations. The estimator

in Lee et al. (2016) may be desparsified in the sense of van de Geer et al. (2014) in order to construct

asymptotically uniform confidence intervals for the parameters of interest and hypothesis tests under

a sparse setting. Despite the considerable progress that has been made for inference in linear high-

dimensional regression, only a few papers provide theoretical insights into more complex models,

such as nonlinear models. Another contribution involves extending oracle inequalities for the LASSO

estimator for high-dimensional threshold regression to non-subgaussian error terms and regressors,

using the maximal inequalities by Chernozhukov et al. (2017). Strengthening our assumption of

sub-Gaussianity could deliver even stronger results.

The rest of the paper is organized as follows. Section 2 recalls the LASSO estimator of Lee et al.

(2016). In Section 3 we develop oracle inequalities for the LASSO estimator of regression slopes

as well as the threshold estimator only assuming non-sub-Gaussian error terms and regressors. In

section 4 we propose a desparsified LASSO estimator for the high-dimensional threshold regression

model and derive the asymptotic distribution of hypothesis tests for slope parameters based on an

adaptation of the work in van de Geer et al. (2014). In section 5 we investigate the finite sample

properties of the desparsified LASSO for threshold models and compare it to the desparsified LASSO

estimator for linear models of van de Geer et al. (2014). All proofs are deferred to the Appendix.

2 The Model

Notation

For {(Yi, Xi, Qi) : i = 1, . . . , n} following (1.1), let bold font Xi(τ) denote the (2p× 1) vector such

that Xi(τ) = (X ′i, X
′
i1{Qi < τ})′ and let X(τ) denote the (n× 2p) matrix whose i-th row is Xi(τ)′.

Let X and X(τ) denote the first and last p columns of X(τ) , respectively.

For any L× 1 real vector a, let ‖a‖q denote the `q norm of a. Particularly, if a = (a1, . . . , an)′,

n-dimensional vector, the prediction norm is defined as ‖a‖n :=
√

1
n

∑n
i=1 a

2
i .

Also, let J(a) := {j ∈ {1, . . . , L} : aj 6= 0} and let |J(a)| denote the cardinality of J(a). Let

M(a) denote the number of nonzero elements of a, i.e.M(a) = |J(a)|. Then we let bJ ∈ RL denote
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the vector has the same coordinates as a on J and zero coordinates on the complement JC . Let the

superscript (j) denote the j-th element of a vector or the j-th column of a matrix depending on the

context.

For anym×nmatrixA, we define ‖A‖∞ := max1≤i≤m,1≤j≤n |Aij |. ‖A‖l∞ := max1≤i≤m
∑n
j=1 |Aij |

denotes the induced l∞-norm of A. Similarly, ‖A‖l1 := max1≤j≤n
∑m
i=1 |Aij | denotes the induced

l1-norm of A.

Finally, define f(α,τ)(x, q) := x′β + x′δ1{q < τ}, f0(x, q) := x′β0 + x′δ01{q < τ0}, and f̂(x, q) :=

x′β̂+x′δ̂1{q < τ̂}. Then, we define the prediction norm as
∥∥∥f̂ − f0

∥∥∥
n

:=

√
1
n

∑n
i=1

(
f̂(Xi, Qi)− f0(Xi, Qi)

)2

.

Throughout the paper, we use the superscript zero to signify the true parameter value.

2.1 LASSO Estimation

We consider the model in (1.1). It can be written as

Yi =

{
X ′iβ0 + Ui, if Qi ≥ τ0,

X ′i(β0 + δ0) + Ui, if Qi < τ0.
(2.1)

Qi in the above model is used to split the sample into two groups. When Qi < τ0, the regression

function becomes X ′i(β0 + δ0) + Ui; if Qi ≥ τ0, the regression function reduces to X ′iβ0 + Ui. As δ0

is the change of regression coefficients between two regimes, the model in (1.1) captures a regime

switch based on an observable scalar variable Qi with a scalar unknown parameter τ0. The case

of δ0 = 0 corresponds to the linear model. If δ̂ = 0, then this case amounts to selecting the linear

model.

Recall the model in Lee et al. (2016). Further assumptions in the model are detailed in Section

3. Let α0 = (β′0, δ
′
0)′. Then, using notation defined above, we can rewrite (1.1) as

(2.2) Yi = Xi(τ0)′α0 + Ui, i = 1, . . . , n.

α0 is the 2p × 1 population vector of coefficients, which we shall assume to be sparse. However,

the location of the non-zero coefficients is unknown and potentially 2p could be much greater than

n. We assume that the explanatory variables are exogenous and precise assumptions will be made

in Assumption 1 below. Let J0 = J(α0), denote the set of non-zero coefficients and s0 = |J0|, the

cardinality. In this paper, we study the high-dimensional case where p is much greater than n.

Let Y := (Y1, . . . , Yn)′. For any τ ∈ T, where T := [t0, t1] is a parameter space for τ0, consider

the residual sum of squares

Sn(α, τ) = n−1
n∑
i=1

(Yi −X ′iβ −X ′iδ1{Qi < τ}})2

= ‖Y −X(τ)α‖2n ,

(2.3)

where α = (β′, δ′)′.
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The scaled LASSO for threshold regression is defined as the one-step minimizer such that:

(α̂, τ̂) := argminα∈B⊂R2p,τ∈T⊂R {Sn(α, τ) + λ ‖D(τ)α‖1} ,(2.4)

where B is a parameter space for α0 and λ is a tuning parameter chosen by the researcher which we

discuss further in Section 3. The (2p× 2p) diagonal weighting matrix is denoted as follows:

(2.5) D(τ) := diag
{∥∥∥X(j)(τ)

∥∥∥
n
, j = 1, ..., 2p

}
,

where X(j)(τ) denotes the j-th column of X(τ). Furthermore, we can rewrite the `1 penalty as

λ ‖D(τ)α‖1 = λ

2p∑
j=1

∥∥∥X(j)(τ)
∥∥∥
n

∣∣∣α(j)
∣∣∣

= λ

p∑
j=1

[∥∥∥X(j)
∥∥∥
n

∣∣∣α(j)
∣∣∣+
∥∥∥X(j)(τ)

∥∥∥
n

∣∣∣α(p+j)
∣∣∣] ,

To be more exact, (α̂, τ̂) in (2.4) can be regarded as a two-step minimizer such that:

Step 1.

For each τ ∈ T, α̂(τ) is defined as

α̂(τ) := argminα∈B⊂R2p {Sn(α, τ) + λ ‖D(τ)α‖1} ,(2.6)

Step 2.

Define τ̂ as the estimator of τ0 such that:

(2.7) τ̂ := argminτ∈T⊂R {Sn(α̂(τ), τ) + λ ‖D(τ)α̂(τ)‖1} .

It is worth mentioning that α̂(τ) is the weighted LASSO that uses a data-dependent `1 penalty

to balance covariates adequately. Additionally, τ̂ is an interval and in accordance with Lee et al.

(2016), we define the maximum of the interval as the estimator τ̂ . For any n, it suffices in practice to

search over Q1, · · ·Qn as candidates for τ̂ , as these are the points where 1 {Qi > τ} , i = 1, · · ·n will

change. To put it another way, we think the parameter space T is divided into n intervals depending

on Q1, · · ·Qn.

3 Oracle inequalities

In this section, we establish the oracle inequality for the scaled LASSO estimator in (2.4). As we

are considering a random design as opposed to a fixed regressor design in Lee et al. (2016), our

assumptions are imposed in a slightly different form. Note Lee et al. (2016) have already argued

how some of their assumptions could be valid in a random design.
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Assumption 1. Let {Xi, Ui, Qi}ni=1 denote a sample of size n, where the covariates {Xi, Qi}ni=1 are

independently and identically distributed (i.i.d.). Additionally, the error terms {Ui}ni=1 are assumed

to be independently distributed.

(i)For the parameter space B for α0, any α ≡ (α1, · · · , α2p) ∈ B ⊂ R2p ,including α0, satisfies

‖α‖∞ ≤ C1, for some constant C1 > 0. M(α0) ≤ s0 and
s20‖δ0‖

2
1 log p
n = op(1).

(ii) Marginal distribution of Qi is uniform (0, 1). τ0 ∈ T = [t0, t1] with 0 < t0 < t1 < 1.

(iii) max1≤j≤pE
[
(X

(j)
i )4

]
≤ C4

2 and min1≤j≤pE
[
(X

(j)
i (t0))2

]
≥ C2

3 uniformly in n for some

universal constants C2 and C3. E
[
X

(j)
i X

(l)
i |Qi = τ

]
is continuous and bounded when τ is in a

neighborhood of τ0 for all 1 ≤ j, l ≤ p.

(iv) The error terms E(Ui|Xi, Qi) = 0 and E(U2
i ) ≤ C <∞ for a positive universal constant C.

(v)

√
EM2

UX

√
log p

√
n

= op(1) where MUX = max1≤i≤n max1≤j≤p |UiX(j)
i |.

(vi)

√
EM2

XX

√
log p

√
n

= op(1) where MXX = max1≤i≤n max1≤j,l≤p |X(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]|.

(vii)

√
EM2

Xt0

√
log p

√
n

= op(1), where MXt0 = max1≤i≤n max1≤j≤p |(X(j)
i (t0))2 − E(X

(j)
i (t0))2|.

Assumption 1 stipulates that the covariates are independently and identically distributed. The

choice of identical distribution for the covariates is primarily motivated by maintaining simplic-

ity in expressions, although there is flexibility to relax this assumption. Notably, the error terms

are permitted to exhibit non-identical distribution, allowing for the possibility of conditional het-

eroskedasticity.

Assumption 1 (i) imposes restrictions for each component of the slope parameter vector. The

second part of Assumption 1 (i) implies that s0 and ‖δ0‖1 can increase with n.

Next, we describe how to solve the problem where the distribution of the threshold variable is

not uniform. This technique is based on empirically transforming the distribution of the threshold

variables to a uniform distribution. Suppose that the threshold variable {Q̃} has a continuous

distribution for which the cumulative distribution function is FQ̃. The probability integral transform

implies that the random variable Q has a standard uniform distribution where Q is defined as

Q = FQ̃(Q̃). To transform the marginals, we computeQi = F̂Q̃(Q̃i) =
rank of Q̃i among

{
Q̃i

}n
i=1

n , where

F̂Q̃ denotes the empirical distribution functions of the data
{
Q̃i

}n
i=1

. In particular, as a result of a

continuous distribution, there is no tie among
{
Q̃i

}n
i=1

. We will show that the performance of our

estimator does not depend on whether the threshold variable(Qi) is part of the set of covariates(Xi)

or correlated with the covariates in Section 5.

Assumption 1 (iii) to (vii) states restrictions on the covariates as well as the error terms in the

random design setup studied in this article. Compared to Assumption 1 in Lee et al. (2016), we only

assume the covariates and error terms are independently and identically distributed with uniformly

bounded certain moments instead of sub-Gaussian data (Callot et al. (2017)) due to Chernozhukov

et al. (2017). That is a much stronger assumption than the one imposed here and rules out data

with heavy tails. Assumption 1 (ii) implies that mini=1,···nQi < t0. Intuitively, we assume that

min1≤j≤pE
[
(X

(j)
i (t0))2

]
is bounded away from 0.
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Assumption 1 (iii) is a much stronger assumption than necessary conditions for the maximal

inequality due to Chernozhukov et al. (2017). Apply the Cauchy-Schwarz Inequality to obtain the

following:

(i) max
1≤j,l≤p

E
[
X

(j)
i X

(l)
i

]
≤ C2

2 uniformly in n;

(ii) max
1≤j≤p

var(UiX
(j)
i ), max

1≤j≤p
var(UiX

(j)
i 1{Qi < τ0}), max

1≤j,l≤p
var(X

(j)
i X

(l)
i ), max

1≤j,l≤p
var(X

(j)
i X

(l)
i ),

max
1≤j,l≤p

var(X
(j)
i X

(l)
i 1{Qi < τ0}), max

1≤j,l≤p
var(X

(j)
i X

(l)
i 1{Qi < τ0}) and max

1≤j≤p
var(X

(j)
i (t0))2are bounded

away from infinity uniformly in n.

Assumption 1 is used to establish the oracle inequality in Lemma 1, Theorem 1 and 2.

Now define

λ =
C

µ

√
log p√
n

(3.1)

as the tuning parameter in (2.4) for a constant C and a fixed constant µ ∈ (0, 1).

Lemma 1. Under Assumption 1, let (α̂, τ̂) be the LASSO estimator defined by (2.4) with λ =
C
µ

√
log p√
n

for a constant C and a fixed constant µ ∈ (0, 1). Then, with probability approaching 1 1 we

have

∥∥∥f̂ − f0

∥∥∥
n
≤
√

(6 + 2µ)C1

√
C2

2 + µλ
√
s0λ.(3.2)

Lemma 1 states that regardless of the linearity of the model, the prediction norm of the scaled

LASSO estimator defined by (2.4) converges to 0, provided that n→∞, p→∞ and s0λ→ 0. This,

in turn, plays an important role for proving the oracle inequality in Theorem 1 for the case of linear

models and Theorem 2 for nonlinear models.

Next, we turn towards the standard assumptions in high-dimensional regression models. To this

end, define the population covariance matrix Σ(τ) := E [Xi(τ)′Xi(τ)], M := E(Xi
′Xi), M(τ) :=

E [Xi(τ)′Xi(τ)] and N(τ) := M−M(τ). Then, Σ(τ) can be represented by a 4-block matrix, i.e.

Σ(τ) =

[
M M(τ)

M(τ) M(τ)

]
.

The population uniform adaptive restricted eigenvalue is denoted by

κ(s0, c0,S,Σ) = min
τ∈S

min
J0⊂{1,...,2p},|J0|≤s0

min
γ 6=0,‖γJc0 ‖1≤c0

√
s0‖γJ0‖2

(γ′E [Xi(τ)′Xi(τ)] γ)1/2

‖γJ0‖2
.

1at least 1 −
(

1

pC̃1
+ C̃2

EM2
X2

n log p

)
−
(

1

pC̃3
+ C̃4

EM2
Xt0

n log p

)
−
(

1

pC̃5
+ C̃6

EM2
UX

nlog p

)
−
(

1

(pn)C̃7
+ C̃8

EM2
UX

n log(pn)

)
, for

some universal positive constants C̃1 · · · C̃8.
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or

κ(s0, c0,S,M) = min
τ∈S

min
J0⊂{1,...,2p},|J0|≤s0

min
γ 6=0,‖γJc0 ‖1≤c0

√
s0‖γJ0‖2

(γ′E [Xi(τ)′Xi(τ)] γ)1/2

‖γJ0‖2
.

or

κ(s0, c0,M) = min
J0⊂{1,...,2p},|J0|≤s0

min
γ 6=0,‖γJc0 ‖1≤c0

√
s0‖γJ0‖2

(γ′E
[
Xi
′Xi

]
γ)1/2

‖γJ0‖2
.

depending on the context.

In the literature on high-dimensional econometrics and statistics, it is common to add an adaptive

restricted eigenvalue condition. Additionally, we consider that an adaptive restricted eigenvalue is

of the same magnitude uniformly over τ ∈ T as follows

Assumption 2. (i) M, M(τ) and N(τ) are are non-singular;

(ii)[Uniform Adaptive Restricted Eigenvalue Condition] For some integer s0 such that M (α0) ≤
s0 < p, a positive number c0 and some set S ⊂ R, the following condition holds

κ(s0, c0,S,Σ) > 0.(3.3)

Assumption 2 (i) is a standard assumption in regression models. One can provide sufficient

conditions for Assumption 2 (ii) by imposing the condition that the population covariance matrix

Σ(τ) have full rank. Hence, we are interested in property of Σ(τ). To solve the inverse of the

population covariance matrix, we do the Gaussian elimination to get

(3.4) Σ(τ)−1 =

[
N(τ)

−1 −N(τ)
−1

−N(τ)
−1

M(τ)
−1

+ N(τ)
−1

]
,

provided that M, M(τ) and N(τ) are non-singular. Therefore, Σ(τ) has full rank as long as M,

M(τ) and N(τ) are invertible. Thus, Assumption 2 (ii) is almost automatic under non-singularity

conditions for M, M(τ) and N(τ).

We will show that 1
nX(τ)′X(τ) uniformly converges to Σ(τ) under Assumption 1 in Lemma 6

in the Appendix. Thus the empirical adaptive restricted eigenvalue condition can hold under the

population eigenvalue condition imposed here, which can be seen in Lemma 7 in the Appendix.

Considering τ0 is unknown, we impose that the restricted eigenvalue condition holds uniformly

over τ. Intuitively, δ0 6= 0 is a necessary condition of identifiability of τ0. If δ0 = 0, we have to

assume Assumption 2 holds with S = T, the whole parameter space for τ0. By contrast, it suffices to

impose the Adaptive Restricted Eigenvalue Condition holding uniformly on a neighborhood of τ0,

when δ0 6= 0.

The Uniform Adaptive Restricted Eigenvalue Condition is crucial for us to update the boundness

in Lemma 1. Lemma 1 states that the prediction norm is bounded by a factor of s0λ. This bound

is larger than what is desired for an oracle inequality. Depending on the UARE condition, the

prediction norm as well as the `1 estimation error will be further tightened in the next section. Lee
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et al. (2016) proposed a type of slope estimator that is not affected by the presence of a threshold

effect. That is to say, we can make predictions and estimate α0 even if δ0 = 0 does not hold.

However, we can derive oracle inequalities in terms of the prediction error and the `1 estimation

error for unknown parameters α0 separately in two cases depending on whether δ0 = 0 or not.

3.1 Case I. No Threshold.

First, we consider the situation where δ0 = 0. In this case, the true model is a linear model

Yi = X ′iβ0 +Ui, but we estimate it using the method defined by (2.4). Our estimated model is much

more over-parametrized than the true one, but we shall obtain relatively precise estimates for the

slope parameter vector α0.

Theorem 1. Supposed that δ0 = 0, let Assumptions 1-2 hold with κ = κ(s0,
1+µ
1−µ ,T,Σ) for 0 < µ < 1.

Let (α̂, τ̂) be the LASSO estimator defined by (2.4) with λ given by (3.1). Then for all sufficiently

large n, with probability approaching 1 2 we have

∥∥∥f̂ − f0

∥∥∥
n
≤ 2
√

2

κ

(√
C2

2 + µλ

)
√
s0λ,

‖α̂− α0‖1 ≤
4
√

2

(1− µ)κ2

C2
2 + µλ√
C2

3 − µλ
s0λ.

Furthermore, these bounds are valid uniformly over the l0-ball

A(1)
`0

(s0) =
{
α0 ∈ R2p | ‖β0‖∞ ≤ C1,M (β0) ≤ s0, δ0 = 0

}
.

It is worth noting that the bound of the prediction norm here is much smaller than in Lemma

1. Compared to Theorem 2 in Lee et al. (2016) or the oracle inequality in the literature on high-

dimensional linear models (Bickel et al. (2009), van de Geer et al. (2014) etc.), Theorem 1 delivers

results of the same magnitude. Although our model is much more overparametrized, our estimation

method can accommodate the linear model. Nonetheless, there is a variable selection problem on

δ0. Our estimation method can find more nonzero coefficients than the true number. In particular,,

some δ(τ̂)j is incorrectly estimated as nonzero. We shall discuss this in more detail in Section 7.9.

3.2 Case II. Fixed Threshold.

In this subsection, we construct oracle inequalities when δ0 6= 0. More explicitly, the true model has

a well-identified and discontinuous threshold effect.

Assumption 3 (Identifiability under Sparsity and Discontinuity of Regression). For a given s0 ≥
M (α0) , and for any η and τ such that η < |τ − τ0| and α ∈ {α :M (α) ≤ s0}, there exists a

2at least 1 −
(

1

pC̃1
+ C̃2

EM2
X2

n log p

)
−
(

1

pC̃3
+ C̃4

EM2
Xt0

n log p

)
−
(

1

pC̃5
+ C̃6

EM2
UX

nlog p

)
−
(

1

(pn)C̃7
+ C̃8

EM2
UX

n log(pn)

)
−(

1

p2C̃9
+ C̃10

EM2
XX

n log p2

)
−
(

1

(p2n)C̃11
+ C̃12

EM2
XX

n log(p2n)

)
, for some universal positive constants C̃1 · · · C̃12.
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constant C4 > 0 such that wpa1 ∥∥f(α,τ) − f0

∥∥2

n
> C4η.

Assumption 3 states identifiability of τ0. Lee et al. (2016) have already discussed in Appendix

B.1. (page. A7–A8) that Assumption 3 is valid in a random design under Assumption 1 above. As

mentioned before, we need Assumption 2 to hold uniformly in a neighborhood of τ0. Lemma 9 shows

how we can get an upper bound of τ̂ − τ0 only under Assumption 1 and 3.

Given Lemma 9 in the appendix, we define

η∗ =
2(3 + µ)C1

C4

√
C2

2 + µλs0λ

and

S = {|τ − τ0| ≤ η∗} ,

where S can be inserted into Assumption 2. Note that we omit the restriction, η ≥ mini |Qi − τ0|
which is imposed in Lee et al. (2016). The reason is that η ≥ mini |Qi − τ0| never binds for sufficiently

large n. Intuitively, mini |Qi − τ0| will be small enough in the random design.

Assumption 4 (Smoothness of Design). For any η > 0, there exists a constant C5 <∞ such that

wpa1

sup
1≤j,l≤p

sup
|τ−τ0|<η

1

n

n∑
i=1

∣∣∣X(j)
i X

(l)
i

∣∣∣ |1{Qi < τ0} − 1{Qi < τ}| ≤ C5η,(3.5)

sup
1≤j,l≤p

sup
|τ−τ0|<η

‖δ0‖1

∣∣∣∣∣ 1n
n∑
i=1

UiX
(j)
i [1{Qi < τ0} − 1{Qi < τ}]

∣∣∣∣∣ ≤ λ
√
η

2
,(3.6)

sup
|τ−τ0|<η

∣∣∣∣∣ 1n
n∑
i=1

UiX
′
iδ0 [1{Qi < τ0} − 1{Qi < τ}]

∣∣∣∣∣ ≤ λ
√
η

2
.(3.7)

Lemme 4 demonstrates that sup1≤j≤p
1
n

∑n
i=1 UiX

(j)
i is bounded by λ with probability approach-

ing one (wpa1). Similarly, Lemma 6 shows that sup1≤j,l≤p | 1n
∑n
i=1X

(j)
i X

(l)
i | is bounded from above

wpa1. The supremum in Assumption 4 is bounded in a neighborhood of τ0 for all 1 ≤ j, l ≤ p. This

strengthening is essential to establish oracle inequalities when a threshold is present. Please note

that (3.7) almost automatically implies (3.6). Furthermore, Lemma 10 demonstrates that if a design

satisfies Assumption 1, then Assumption 4 holds.

Theorem 2. Suppose that δ0 6= 0, let Assumption1 to 2 hold with κ = κ(s0,
2+µ
1−µ ,S,Σ) for 0 < µ < 1.

Furthermore, Assumptions 3 and 4 hold. Let (α̂, τ̂) be the LASSO estimator defined by (2.4) with λ

given by (3.1).

10



Then for all sufficiently large n, with probability approaching 1 3 we have

∥∥∥f̂ − f0

∥∥∥
n
≤ 6

√
C2

2 + µλ

κ

√
s0λ,

‖α̂− α0‖1 ≤
36(C2

2 + µλ)

κ2(1− µ)
√
C2

3 − µλ
s0λ,

|τ̂ − τ0| ≤

(
3 (1 + µ)

√
(C2

2 + µλ)

(1− µ)
√

(C2
3 − µλ)

+ 1

)
12(C2

2 + µλ)

κ2C4
s0λ

2.

Furthermore, these bounds are valid uniformly over the l0-ball

A(2)
`0

(s0) =
{
α0 ∈ R2p | ‖α0‖∞ ≤ C1,M (α0) ≤ s0, δ0 6= 0

}
.

The oracle inequalities in Theorem 2, disregarding constant terms, align with those in Theorem

1 concerning the prediction norm and `1 errors for estimates. These results hold uniformly over

B`0(s0), where

B`0(s0) = A(2)
`0

(s0) ∪ A(1)
`0

(s0) =
{
α0 ∈ R2p | ‖α0‖∞ ≤ C,M(α0) ≤ s0

}
.

For the super-consistency result of τ̂ , Lee et al. (2016) argued that the least squares objective

function behaving locally linearly around the true threshold parameter value is the key to achieving

the super-consistency for the threshold parameter.

The main contribution of this section is that we have extended the oracle inequality to non-

sub-Gaussian random regressors with non-sub-Gaussian errors for both the prediction norm and `1

errors for estimates.

4 The Desparsified LASSO

Now, we turn to the construction of confidence bands for the elements of α0, ensuring uniform

validity over all α0 within certain `0-balls. To achieve this, we introduce the desparsified LASSO

estimator, which is employed in the construction of tests and confidence intervals. Specifically, we

consider the following form of the desparsified LASSO estimator:

â(τ̂) = α̂(τ̂) + Θ̂(τ̂)X′(τ̂)(Y −X(τ̂)α̂(τ̂))/n,(4.1)

where α̂(τ̂) and τ̂ is defined in (2.4), Θ̂(τ̂) is an approximate inverse of the Gram matrix Σ̂(τ̂) =

X′(τ̂)X(τ̂)/n. The reason that we calculate an approximate inverse of the Gram matrix to be used

3at least 1 −
(

1

pC̃1
+ C̃2

EM2
X2

n log p

)
−
(

1

pC̃3
+ C̃4

EM2
Xt0

n log p

)
−
(

1

pC̃5
+ C̃6

EM2
UX

nlog p

)
−
(

1

(pn)C̃7
+ C̃8

EM2
UX

n log(pn)

)
−(

1

p2C̃9
+ C̃10

EM2
XX

n log p2

)
−
(

1

(p2n)C̃11
+ C̃12

EM2
XX

n log(p2n)

)
, for some universal positive constants C̃1 · · · C̃12.
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is that when p > τ̂n,4, an inverse of the Gram matrix Σ̂(τ̂) is not feasible. Σ̂(τ) is of reduced

rank provided that p > τ̂n. Thus, the idea is to construct an approximate inverse, Θ̂(τ̂), to Σ̂(τ̂)

and control the error term resulting from this approximation. Our construction of this approximate

inverse relies on nodewise regression of Yuan (2010), which will be introduced in the next subsection.

We now derive the error decomposition of the estimator in (4.1), which provides intuitions on

the construction of Θ̂(τ̂).

By the minimizing property of α̂(τ̂), it follows the first-order condition of (2.6):

−X(τ̂)′(Y −X(τ̂)α̂(τ̂))/n+ λD(τ̂)ρ̂ = 0,(4.2)

where ρ̂ is a 2p by 1 vector, arising from the subdifferential of ‖α̂(τ̂)‖1. ‖ρ̂‖∞ ≤ 1 and ρ̂j =

sign(â(j)(τ̂)) if â(j)(τ̂) 6= 0, where ”sign()” is the function that maps positive entries to 1 and

negative entries to -1. So (4.1) can be rewritten as

â(τ̂) = α̂(τ̂) + λΘ̂(τ̂)D(τ̂)ρ̂(4.3)

4.1 Bias Correction Case I. No Threshold

We first consider the case where δ0 = 0. Then, the true model is simply a linear model Yi = X ′iβ0+Ui.

Inserting Y = Xβ0 + U into (4.2) yields

λD(τ̂)ρ̂+ X(τ̂)′(X(τ̂)α̂(τ̂)−Xβ0)/n = X′(τ̂)U/n.(4.4)

Note that δ0 = 0 implies X(τ̂)δ0 = 0 for any τ̂ ∈ T, since τ̂ is an overparameterized term, we

can add X(τ̂)δ0 into (4.4) anywhere to obtain

λD(τ̂)ρ̂+ X(τ̂)′(X(τ̂)α̂(τ̂)−X(τ̂)α0)/n = X′(τ̂)U/n,(4.5)

The expression with one more step:

λD(τ̂)ρ̂+ Σ̂(τ̂)(α̂(τ̂)− α0) = X′(τ̂)U/n.(4.6)

Thus, we have

â(τ̂) = α̂(τ̂) + λΘ̂(τ̂)D(τ̂)ρ̂

= α̂(τ̂)− Θ̂(τ̂)Σ̂(τ̂)(α̂(τ̂)− α0) + Θ̂(τ̂)X′(τ̂)U/n

= α0 − α0 + α̂(τ̂)− Θ̂(τ̂)Σ̂(τ̂)(α̂(τ̂)− α0) + Θ̂(τ̂)X′(τ̂)U/n

= α0 + Θ̂(τ̂)X′(τ̂)U/n−∆(τ̂)/n1/2,

(4.7)

4Given that τ0 is unknown, we must construct the approximate inverse Θ̂(τ) when τ̂ · n < p. In a more stringent

assumption, if min{t0, t1, 1− t0, 1− t1} · n < p, we construct the approximate inverse Θ̂(τ).

12



where

∆(τ) =
√
n(Θ̂(τ)Σ̂(τ)− I2p)(α̂(τ)− α0).

In order to derive the asymptotic distribution of tests involving an increasing number of param-

eters, we define a (2p× 1) vector g with ‖g‖2 = 1 and let H = j = 1, · · · 2p | gj 6= 0 with cardinality

|H| = h < p. H contains the indices of the coefficients involved. This implies ‖g‖1 ≤
√
h by

the Cauchy–Schwarz inequality. In particular, g = ej is the case where we only consider a single

coefficient, where ej is the j-th 2p× 1 unit vector.

Considering

√
ng′(â(τ̂)− α0) = g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂),(4.8)

a central limit theorem for g′Θ̂(τ̂)X′(τ̂)U/n1/2 and a verification of the asymptotic negligibility of

g′∆(τ̂) will achieve the desired convergence and yield asymptotically Gaussian inference.

4.2 Bias Correction Case II. Fixed Threshold.

This subsection explores the case where the threshold effect is well identified and discontinuous.

Following a similar derivation in Section 4.1, this time we insert Y = X(τ0)α0 + U into (4.2). This

yields:

λD(τ̂)ρ̂+ Σ̂(τ̂)α̂(τ̂)−X′(τ̂)X(τ0)α0/n = X′(τ̂)U/n.(4.9)

substituting (4.9) into (4.3) yields:

α̂(τ̂) = α0 + Θ̂(τ̂)X′(τ̂) (X(τ0)α0 −X(τ̂)α0) /n

− Θ̂(τ̂)λD(τ̂)ρ̂+ Θ̂(τ̂)X′(τ̂)U/n−∆(τ̂)/n1/2.
(4.10)

In order to derive the asymptotic distribution of tests involving an increasing number of pa-

rameters, we define a (2p × 1) vector g with ‖g‖2 = 1 and let H = {j = 1, · · · 2p | gj 6= 0} with

cardinality |H| = h < p. H contains the indices of the coefficients involved. This implies ‖g‖1 ≤
√
h

by Cauchy–Schwarz inequality. In particular, g = ej is the case where we only consider a single

coefficient, where ej is the j-th 2p× 1 unit vector.

Considering

√
ng′(â(τ̂)− α0) = g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂)

+ g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2,

(4.11)

a central limit theorem for g′Θ̂(τ0)X′(τ0)U//n1/2 and a verification of asymptotic negligibility of

g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)//n1/2, g′∆(τ̂) and g′Θ̂(τ̂)(X′(τ̂)X(τ0) − X′(τ̂)X(τ̂))α0/n
1/2 will

13



achieve the desired convergence and yield asymptotically Gaussian inference.

4.3 Constructing the Approximate Inverse Θ̂(τ)

In this section, we formalize the approximate inverse Θ̂(τ) utilized in our threshold model. The

approach closely follows that of van de Geer et al. (2014), with the additional requirement of verifying

that our specified conditions are met.

For the purpose discussed in the context of (4.11), we seek a well-behaved Θ̂(τ) and examine the

asymptotic properties of Θ̂(τ) uniformly across τ ∈ T. To achieve this, we establish a connection

between Θ̂(τ) and Θ(τ), where Θ(τ) := Σ(τ)−1 is defined in (3.4) as

Σ(τ)−1 =

[
N(τ)

−1 −N(τ)
−1

−N(τ)
−1

M(τ)
−1

+ N(τ)
−1

]
.

Define M̂(τ) = 1
n

∑n
i=1Xi

′Xi1{Qi < τ} and N̂(τ) = 1
n

∑n
i=1Xi

′Xi1{Qi ≥ τ}. We construct the

approximate inverse Θ̂(τ) because p > τ̂n.To be precise, the threshold variable Qi is used to split

the sample into two groups. As long as either sample covariance matrix M̂(τ) or N̂(τ) is of reduced

rank, we have to construct their respective approximate inverses.

Then we construct approximate inverse Â(τ) of M̂(τ) and B̂(τ) of N̂(τ) and we relate Â(τ) to

A(τ) := M(τ)−1 and B̂(τ) to B(τ) := N(τ)−1.

Let X(−j)(τ) denote all columns of X(τ) except for the j-th one and let X̃(j)(τ) denote the

(n× 1) vector such that X̃
(j)
i (τ) = X

(j)
i 1{Qi ≥ τ}. Then, X̃(−j)(τ) denotes a (n× (p− 1)) matrix

except for the j-th column of X̃(τ). Along Section 2.1 of Yuan (2010) we can rewrite the following

regression models with covariates orthogonal in L2 to the error terms for all j = 1 · · · p,

X(j)(τ) = X(−j)(τ)′γ0,j(τ) + υ(j),

X̃(j)(τ) = X̃(−j)(τ)′γ̃0,j(τ) + υ̃(j).

The details of the covariance matrix’s representation of the regression coefficients are given in Ap-

pendix B of Caner and Kock (2018). υ(j) and υ̃(j) are not a function of τ due to the independence

of Q.

We put forward the following assumptions:

Assumption 5. (i) For the parameter space max1≤j≤p ‖γj‖∞ ≤ C , for some constant C > 0;

(ii)E(υ
(j)
i |Xi, Qi) = 0 and E[(υ

(j)
i )2] is uniformly bounded over j = 1, · · · p; E(υ̃

(j)
i |Xi, Qi) = 0 and

E[(υ̃
(j)
i )2] is uniformly bounded over j = 1, · · · p;

(iii)

√
EM2

υX

√
log p

√
n

<∞, where MυX = max1≤i≤n max1≤l≤p |υ(j)
i X

(l)
i |.

Assumption 5 controls the tail distribution of |υ(j)
i X

(l)
i | and |υ̃(j)

i X
(l)
i |, in order to apply the

oracle inequality proved in previous work.
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Given any τ ∈ T, the LASSO nodewise regression for Â(τ) is defined as follows:

γ̂j(τ) = argminγ∈Rp−1‖X(j)(τ)−X(−j)(τ)γ‖2n + λnode‖Γ̂j(τ)γ‖1,(4.12)

where

Γ̂j(τ) := diag
{∥∥∥X(l)(τ)

∥∥∥
n
, l = 1, ..., p, l 6= j

}
,

with components of γ̂j(τ) = {γ̂j(k)(τ); k = 1, ..., p, k 6= j}. The (2p × 2p) diagonal weighting

matrix is denoted as follows: It is noteworthy that we choose λ to be the same in all of the nodewise

regressions. The nodewise LASSO runs p times as an intermediate step to construct Â(τ). Let

(4.13) Ĉ(τ) =


1 −γ̂1

(2)(τ) · · · −γ̂1
(p)(τ)

−γ̂2
(1)(τ) 1 · · · −γ̂2

(p)(τ)

. . . . . .
. . . . . .

−γ̂p(1)(τ) −γ̂p(2)(τ) · · · 1

 .

Then, model (4.12) will be sparse with γ̂j(τ) possessing sj(τ) non-zero entries. To define Â(τ) we

introduce a p× p diagonal matrix Ẑ(τ)2 = diag(ẑ1(τ)2, · · · , ẑp(τ)2), where

ẑj(τ)2 = ‖X(j)(τ)−X(−j)(τ)γ̂j(τ)‖2n + λnode‖Γ̂j(τ)γ̂j(τ)‖1,(4.14)

for all j = 1, ..., p. Hence, we may define

Â(τ) = Ẑ(τ)−2Ĉ(τ).(4.15)

It remains to be shown that this Â(τ) is close to the inverse of M̂(τ). We define Âj(τ) as the j’th

row of Â(τ). Thus, Âj(τ) = Ĉj(τ)/ẑj(τ)2. Denoting by ẽj the j’th p × 1 unit vector, the KKT

conditions also imply that

(4.16) ‖Âj(τ)′M̂(τ)− ẽ′j‖∞ ≤
λnode
ẑj(τ)2

.

Parallel to construction of Â(τ) above, we define

B̂(τ) = ̂̃Z(τ)−2 ̂̃C(τ).(4.17)

We define

̂̃γ(τ)j = argminγ∈Rp−1‖X̃(j)(τ)− X̃(−j)(τ)′γ‖2n + λnode‖̂̃Γj(τ)γ‖1(4.18)

where ̂̃
Γj(τ) := diag

{∥∥∥X̃(l)(τ)
∥∥∥
n
, l = 1, ..., p, l 6= j

}
,
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with components of ̂̃γ(τ)j = { ̂̃γj(k)
(τ); k = 1, ..., p, k 6= j}. Denote by ̂̃Z(τ)2 = diag( ̂̃z1(τ)2, · · · , ̂̃zp(τ)2)

which is a p× p diagonal matrix with

̂̃zj(τ)2 = ‖X̃(j)(τ)− X̃(−j)(τ)′̂̃γ(τ)j‖2n + λnode‖̂̃Γj(τ)̂̃γ(τ)j‖1,(4.19)

for all j = 1, ..., p. We let

(4.20) ̂̃C(τ) =


1 − ̂̃γ1

(2)
(τ) · · · − ̂̃γ1

(p)
(τ)

− ̂̃γ2
(1)

(τ) 1 · · · − ̂̃γ2
(p)

(τ)

. . . . . .
. . . . . .

− ̂̃γp(1)
(τ) − ̂̃γp(2)

(τ) · · · 1

 .

We also get the following inequality:

(4.21) ‖B̂(τ)′jN̂(τ)− ẽ′j‖∞ ≤
λnodễzj(τ)2

.

Thus

(4.22) Θ̂(τ) =

[
B̂(τ) −B̂(τ)

−B̂(τ) Â(τ) + B̂(τ)

]
.

Denoting by ej the j’th 2p× 1 unit vector,

(4.23) max
j∈H

sup
τ∈T
‖Θ̂(τ)′jΣ̂(τ)− e′j‖∞ ≤ max

j∈Horj+p∈H
sup
τ∈T

λnode
ẑj(τ)2

+ max
j∈Horj+p∈H

sup
τ∈T

λnodễzj(τ)2
.

(Formal proof is given in the Appendix. )

Hence, we get the error term resulting from this approximation, i.e. the upper bound on the

maximal absolute entry of the j’th row of Θ̂(τ)′Σ̂(τ)− I2p. This provides the sufficient conditions

to show that g′∆(τ) in (4.11) is asymptotically negligible.

Define s̄ = supτ∈T maxj∈H sj(τ), where sj(τ) = |Sj(τ)|, andSj(τ) = {Θj,i(τ) 6= 0}.
We then have the following result.
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Lemma 2. Let Assumptions 1-5 be satisfied and set λnode = C
µ

√
log p
n . Then,

max
j∈H

sup
τ∈T
‖Θ̂(τ)j −Θ(τ)j‖1 = Op

(
s̄

√
log p

n

)
(4.24)

max
j∈H

sup
τ∈T
‖Θ̂(τ)j −Θ(τ)j‖2 = Op

(√
s̄ log p

n

)
(4.25)

max
j∈H

sup
τ∈T
‖Θ̂(τ)j‖1 = Op

(√
s̄
)

(4.26)

max
j∈H

sup
τ∈T
‖Θ̂(τ)′jΣ̂(τ)− e′j‖∞ = Op

(√
log p

n

)
(4.27)

4.4 Inference

In this section, we derive asymptotic normality under high-level conditions which allows us to es-

tablish joint inference on a linear combination of the entries of the desparsified LASSO â(τ̂).

To this end, we define

Σ̂xu(τ̂) =
1

n

n∑
i=1

Xi(τ̂)′Xi(τ̂)(Ûi(τ̂))2,

κ̃(s0, c0,T,Σ) = max
τ∈T

max
J0⊂{1,...,2p},|J0|≤s0

max
γ 6=0,‖γJc0 ‖1≤c0

√
s0‖γJ0‖2

(γ′E [Xi(τ)′Xi(τ)] γ)1/2

‖γJ0‖2
,

and

̂̃κ(s0, c0,T, Σ̂) = max
τ∈T

max
J0⊂{1,...,2p},|J0|≤s0

max
γ 6=0,‖γJc0 ‖1≤c0

√
s0‖γJ0‖2

(γ′ 1nX(τ)′X(τ)γ)1/2

‖γJ0‖2
.

The following assumptions are imposed to establish a limiting distribution for an increasing number

of coefficients.

Assumption 6. (i) max1≤j≤pE
[
(X

(j)
i )12

]
and E

[
U4
i

]
are bounded away from infinity uniformly

in n.√
EM2

X6

√
log p

√
n

= op(1),

√
EM2

X2U2

√
log p

√
n

= op(1) and

√
EM2

X4U2

√
log p

√
n

= op(1), where

MX6 = max
1≤i≤n

max
1≤k,l,j≤p

|(X(k)
i X

(l)
i X

(j)
i )2 − E(X

(k)
i X

(l)
i X

(j)
i )2|,

MX2U2 = max
1≤i≤n

max
1≤j,l≤p

|X(j)
i X

(l)
i U2

i − E[X
(j)
i X

(l)
i U2

i ]|,

and

MX4U2 = max
1≤i≤n

max
1≤j,l≤p

|(X(j)
i X

(l)
i Ui)

2 − E[X
(j)
i X

(l)
i Ui]

2|.

(ii)

(h)
3
2 s2

0s̄
2 log p√

n
= op(1).
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(iii) (hs̄)3

n2 = op(1);

κ(s̄, c0,T,Σxu) and κ(s̄, c0,T,Σ) are bounded away from zero;

κ̃(s̄, c0,T,Σxu) and κ̃(s̄, c0,T,Σ) are bounded from above.

Assumption 6 gives sufficient conditions for a central limit theorem result. Assumption 6 (i) con-

trols the tail behavior of the covariates and the error terms. By Assumption 6(i), max1≤j,l≤p var(X
(j)
i X

(l)
i U2

i ),

max1≤k,l,j≤p var(X
(k)
i X

(l)
i X

(j)
i )2 and max1≤j,l≤p var(X

(j)
i X

(l)
i Ui)

2 are bounded away from infinity

uniformly in n.

Assumption 6(ii) limits the dimension of the models, the dimension involved in conducting joint

inference, the sparsity of the population covariance matrix, and the sparsity of the slope parameter

vector.

The first part of Assumption 6 (iii) is designed to verify the Lyapunov condition. Then the other

part restricts the eigenvalues of Σxu(τ) and Σ(τ).

Hence, we have the following result.

Theorem 3. Let Assumptions 1, 2, 3, 4, 5 and 6 be satisfied and let g be 2p × 1 vector satisfying

‖g‖2 = 1. Then,

√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

d→ N(0, 1).(4.28)

Furthermore,

sup
α0∈A(1)

`0
(s0)

|g′Θ̂(τ̂)Σ̂xu(τ̂)Θ̂′(τ̂)g − g′Θ(τ̂)Σxu(τ̂)Θ′(τ̂)g| = op(1)(4.29)

sup
α0∈A(2)

`0
(s0)

sup
τ0∈T
|g′Θ̂(τ̂)Σ̂xu(τ̂)Θ̂′(τ̂)g − g′Θ(τ0)Σxu(τ0)Θ′(τ0)g| = op(1)(4.30)

where

A(1)
`0

(s0) =
{
α0 ∈ R2p | ‖α0‖∞ ≤ C,M(α0) ≤ s0, δ0 = 0

}
,

and

A(2)
`0

(s0) =
{
α0 ∈ R2p | ‖α0‖∞ ≤ C,M(α0) ≤ s0, δ0 6= 0

}
.

When conducting testing, we lack prior knowledge of the presence of a threshold. Consequently,

in Theorem 3, we need to simultaneously impose the assumptions of Theorems 1 and 2. The first

part of Theorem 3 implies convergence to the normal distribution of a sub-vector of â(τ̂) of increasing

dimension uniformly over B`0(s0). The number of parameters involved in hypotheses is allowed to

grow to infinity at a rate restricted by the above Assumption 6(ii).

The second part shows that we propose a consistent estimator of the covariance matrix uniformly

over B`0(s0). The uniformity of (4.29) and (4.30) will also be used in the proof of uniform convergence

below.
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In the case where H is a set of fixed cardinality h, (4.28) implies that

‖
(
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

)− 1
2 √

ng′(â(τ̂)− α0)‖22
d→ χ2(h),(4.31)

correspondingly ‖g‖2 = 1 and H = {j = 1, · · · 2p | gj 6= 0}. Thus, χ2 test can be conducted with a

hypothesis on h parameters simultaneously.

We now establish confidence intervals for our parameters. We refer to the proof of Theorem 3 in

Caner and Kock (2018) and its details therefore are omitted.

Let Φ(t) denote the cumulative distribution function (CDF) of the standard normal distribu-

tion and z1−α2 is the 1 − α
2 percentile of the standard normal distribution. Denote by σ̂(τ̂)j =√

e′jΘ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′ej for all j ∈ {1, · · · 2p}. Let diam([a, b]) map the length of the interval[a, b] ⊂
R.

Hence we have the following results:

Theorem 4. Let Assumptions 1, 2, 3, 4, 5 and 6 be satisfied and let g be 2p × 1 vector satisfying

‖g‖2 = 1. Then,

sup
t∈R

sup
α0∈A`0 (s0)

∣∣∣∣∣∣P


√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
≤ t

− Φ(t)

∣∣∣∣∣∣→0.(4.32)

Furthermore, for all j ∈ {1, · · · 2p},

lim
n→∞

inf
α0∈B`0 (s0)

P
{
α

(j)
0 ∈

[
â(j)(τ̂)− z1−α2

σ̂(τ̂)j√
n
, â(j)(τ̂) + z1−α2

σ̂(τ̂)j√
n

]}
= 1− α.(4.33)

Finally,

sup
α0∈B`0 (s0)

diam(

[
â(j)(τ̂)− z1−α2

σ̂(τ̂)j√
n
, â(j)(τ̂) + z1−α2

σ̂(τ̂)j√
n

]
) = Op(

1√
n

),(4.34)

where

B`0(s0) = A(2)
`0

(s0) ∪ A(1)
`0

(s0) =
{
α0 ∈ R2p | ‖α0‖∞ ≤ C,M(α0) ≤ s0

}
.

(4.32) implies that the convergence to the standard normal distribution is actually valid uniformly

over the `0-ball of radius at most s0.

5 Monte Carlo Simulation

In this section, we explore the finite sample properties of the proposed desparsified LASSO proce-

dures for threshold regression through Monte Carlo experiments. To establish a benchmark for the

desparsified LASSO in threshold regression, we also implement the desparsified LASSO for linear

regression as introduced by van de Geer et al. (2014). Before delving into the results, we provide
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an explanation of how the data was generated and the performance measures used for comparing

the desparsified LASSO for the threshold model with the desparsified LASSO method proposed by

van de Geer et al. (2014).

5.1 Implementation details

The implementation of the desparsified LASSO for linear model is inspired by the publicly available

code at https://web.stanford.edu/~montanar/ssLASSO/code.html. We also modify the code of

Callot et al. (2017) at https://github.com/lcallot/ttlas to the desparsified LASSO for threshold

model. To choose the tuning parameters λnode, we employ the Generalized Information Criterion

proposed by Fan and Tang (2013) (GIC). We utilize GIC and ten-fold cross-validation to select

the tuning parameters λ. However, according to our simulation results, cross-validation does not

significantly enhance the quality of the results, while the processing time is considerably longer.

Hence, we select both λ and λnode based on GIC.

5.2 Performance measures

We focus successively on several dimensions: the number of observations, the quantity of covariates,

and the correlation between the threshold variable and the covariates.

Both covariates and error terms are assumed to follow a t-distribution with 10 degrees of freedom.

Specifically, each covariate is generated as X
(j)
i ∼ t(10) for each j ∈ 1, · · · , p, and the error term

Ui ∼ t(10) is independent of the covariates. When the threshold variable Qi is independent of

Xi, Qi ∼ uniform(0, 1). In the case where the threshold variable Qi is correlated with Xi with

a correlation coefficient ρ, we generate two uniform(0, 1) distributions, Q1i and Q2i, and Qi =

ρQ1i + (1 − ρ)Q2i; then, we replace the second column of Xi with Q2i. We set the threshold

parameter τ0 = 0.5 to prevent either of the split samples from being unbalanced. Neither the

intercept nor the thresholded intercept is involved in the design to simplify the test. Without loss

of generality, we assume β0 is p× 1 with s0/2 ones and p− s0/2 zeros and the sparsity of β0 and δ0

are identical. So the total number of nonzero parameters are s0

All tests are conducted at a 5% significance level, and all confidence intervals are set at the 95%

level. The χ2-test involves the first non-zero parameter and the first zero parameter in β0 and δ0

for threshold regression. For linear regression, the χ2-test involves the first non-zero parameter and

the first zero parameter in β0.

The performance of our desparsified LASSO for threshold regression and the desparsified LASSO

of van de Geer et al. (2014) is evaluated based on the following statistics, averaged across iterations.

1. Size: We evaluate the size of the χ2-test in (4.31) for a hypothesis involving more than one

parameter. The null hypothesis is always that the coefficients equal the true value.

2. Power: We evaluate the size of the χ2-test in (4.31) for a hypothesis involving more than one

parameter. To measure the power of the test, we test whether δ
(s0/2+1)
0 equals its assigned value

plus 1. The difference in alternatives is merely to obtain non-trivial power comparisons (i.e. to avoid

either the power of all tests being (very close to) zero or (very close to) one).
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3. Coverage Rate: We compute the coverage rate of a Gaussian confidence interval constructed

as in (4.34) in Theorem 4. All results related to the desparsified LASSO for threshold regression

are conducted for the coefficients corresponding to the first nonzero entry and first zero entry of

β0 (i.e., β
(1)
0 , β

(s0/2+1)
0 ) and the first nonzero entry and first zero entry of δ0 (i.e., δ

(1)
0 , δ

(s0/2+1)
0 ).

All results related to the desparsified LASSO for linear regression are conducted for the coefficients

corresponding to the first nonzero entry and first zero entry of β0 (i.e., β
(1)
0 , β

(s0/2+1)
0 ).

For assessing the size of the χ2-test using the desparsified LASSO for threshold regression, we

evaluate the true hypothesis H0 : (β
(1)
0 , β

(s0/2+1)
0 , δ

(1)
0 , δ

(s0/2+1)
0 ) = (1, 0, 1, 0). Due to an incorrect

model specification, the χ2-test for the desparsified LASSO for linear regression focuses on the first

nonzero entry and first zero entry of β0 i.e., H0 : (β
(1)
0 , β

(s0/2+1)
0 ) = (1, 0).

To evaluate the power of the χ2-test, we examine the false hypothesisH0 : (β
(1)
0 , β

(s0/2+1)
0 , δ

(1)
0 , δ

(s0/2+1)
0 ) =

(1, 0, 1, 1) for the desparsified LASSO for threshold regression. For the desparsified LASSO for linear

regression, we test the false hypothesis H0 : (β
(1)
0 , β

(s0/2+1)
0 ) = (1, 1).

We construct confidence intervals for (β
(1)
0 , β

(s0/2+1)
0 , δ

(1)
0 , δ

(s0/2+1)
0 ) for the desparsified LASSO

for threshold regression or (β
(1)
0 , β

(s0/2+1)
0 ) for the desparsified LASSO for linear regression.

The number of Monte Carlo replications for each design is consistently set to 200.

5.3 Design 1

In this design, we investigate the effect of using a threshold variable that is part of the set of

covariates (Q ∈ X), or that is correlated with the covariate. To be more precise, let X(2) denote

the second column of X, and ρQ,X(2) be the correlation between Q and X(2). We consider the case

where Q is independent of X, Q = X(2), as well as ρQ,X(2) = 0.9.

5.4 Design 2

This design is to increase the number of observations or the number of variables to investigate the

asymptotic properties of our procedure. We take s0 = 10, which is a very sparse setting to satisfy

assumptions on s0 with relatively large n and p.

The following combinations of n and p are considered:

(n, p) ∈ {(500, 100), (500, 250), (500, 400), (100, 250), (300, 250)}

5.5 Results of simulations

In this section, we present the results of a series of simulation experiments assessing the finite sample

properties of the desparsified LASSO for threshold regression.

Table 1 indicates that whether the threshold variable is included in the set of covariates or

correlated with one of the covariates has almost no impact on the performance of our desparsified

Lasso Estimator for the high-dimensional threshold model. The size and power of the χ2-test are

very close to the nominal significance level with the desparsified LASSO for the threshold model.
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Notably, it is not surprising that the size and power of the χ2-test exhibit substantial distortion

with the desparsified LASSO for the linear model. All numbers concerning confidence bands are

reasonable with the desparsified LASSO for the threshold model but are slightly over-covered. The

desparsified Lasso Estimator for the linear model procedure does exhibit an undercover coverage

rate of nonzero parameters, but for zero parameters, it has a tendency to overcover.

Table 2 indicates that the desparsified LASSO for the high-dimensional threshold model con-

sistently exhibits less size distortion while having slightly more power as n increases in a high-

dimensional setting. The size and power approach nominal levels as n is increased. All numbers

concerning coverage rates are reasonable with the desparsified LASSO for the threshold model. The

desparsified LASSO for the threshold model procedure always has coverages that gradually improve

as the sample size is increased. However, nonzero coverage rates are close to 1, indicating a tendency

to overcover.

Table 3 illustrates that the desparsified LASSO for the threshold model procedure continues

to perform well in terms of size, power, and the confidence intervals even as experiments become

progressively more challenging, with the choice of p > n and the models naturally becoming high

dimensional. However, nonzero coverage rates are close to 1, indicating a tendency to overcover.

In general, the desparsified LASSO for threshold regression performs much better in terms of

size, power, and coverage rate compared to the desparsified LASSO for the linear model proposed

by van de Geer et al. (2014) when threshold effects are present.

6 Conclusion

In this paper, we introduce a desparsified LASSO estimation procedure designed for high-dimensional

threshold models. We propose a method for constructing uniformly valid confidence bands in the

context of the nonlinear regime-switch model. Notably, our study adopts less restrictive assump-

tions compared to existing research on high-dimensional threshold models, removing the assumption

of sub-Gaussian error terms and covariates. Future research directions could include extending the

desparsified LASSO methodology to dynamic panels with threshold effects and expanding the frame-

work to accommodate models with multiple thresholds.
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7 Appendix

7.1 Tables

Table 1: Summary statistics for Design 1: the dependence between the threshold variable and the
covariates

χ2 coverage rate
n=500, p=250

size power non-zero zero
β δ β δ

Q is independent of X
DLTH 0.03 0.93 0.99 0.98 1.00 1.00

DL 0.43 0.57 0.27 1.00

ρQ,X(2) = 0.9
DLTH 0.05 0.86 0.95 0.98 1.00 1.00

DL 0.49 0.50 0.23 1.00

Q = X(2) DLTH 0.04 0.91 0.97 0.98 1.00 1.00
DL 0.44 0.46 0.21 1.00

Table 2: Summary statistics for Design 2: the number of observations

χ2 coverage rate
p=250, Q = X(2)

size power non-zero zero
β δ β δ

n=100
DLTH 0.12 0.19 0.90 0.77 1.00 1.00

DL 0.03 0.26 0.96 1.00

n=300
DLTH 0.09 0.72 0.93 0.94 1.00 1.00

DL 0.21 0.34 0.78 1.00

n=500
DLTH 0.04 0.91 0.97 0.98 1.00 1.00

DL 0.44 0.46 0.21 1.00
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Table 3: Summary statistics for Design 2: the number of variables

χ2 coverage rate
n=500, Q = X(2)

size power non-zero zero
β δ β δ

p=100
DLTH 0.05 0.97 0.95 0.95 1.00 1.00

DL 0.75 0.65 0.08 1.00

p=250
DLTH 0.04 0.91 0.97 0.98 1.00 1.00

DL 0.44 0.46 0.21 1.00

p=400
DLTH 0.02 0.92 0.99 0.97 1.00 1.00

DL 0.34 0.44 0.41 1.00

7.2 Proofs for Section 3

In this section of the appendix, firstly we prove the oracle inequality of prediction error. Let the

event

A1 :=

{
max

1≤j≤p

1

n

n∑
i=1

(X
(j)
i )2 ≤ C2

2 + µλ

}

A2 :=

{
min

1≤j≤p

1

n

n∑
i=1

(X
(j)
i (t0))2 ≥ C2

3 − µλ

}
,

In particular

{A2} ⊆

{
min

1≤j≤p

1

n

n∑
i=1

(X
(j)
i )2 ≥ C2

3 − µλ

}

The following lemma provides lower bounds on the probabilities of upper bounds of second moment

of regressors. B.

Lemma 3 (Probability of A1 and A2). Let Assumption 1 be satisfied and set λ by (3.1). Then

P{A1} ≥ 1−

 1

pC̃1

+ C̃2

EM2
X2 log p

n

(log p)2


P{A2} ≥ 1−

 1

pC̃3

+ C̃4

EM2
Xt0

log p

n

(log p)2
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Proof of Lemma 3. Consider the term ‖X(j)
i ‖2n = 1

n

∑n
i=1(X

(j)
i )2. Lemma E.2(ii) of Chernozhukov

et al. (2017) provides (set η = 1 and s = 2 in their Lemma):

P

{
max

1≤j≤p
| 1
n

n∑
i=1

(X
(j)
i )2 − E[(X

(j)
i )2]| ≥ 2E

[
max

1≤j≤p
| 1
n

n∑
i=1

(X
(j)
i )2 − E[(X

(j)
i )2]|

]
+
t

n

}

≤ exp {− t2

3nmax1≤j≤p V ar[(X
(j)
i )2]

}+ C̃
EM2

X2

t2
, set t = (n log p)1/2, then we have

≤ 1

pC̃
+ C̃

EM2
X2

n log p

(7.1)

for a positive constant, C̃ > 0. With Assumption 1, Lemma E.1 of Chernozhukov et al. (2017)

provides, with C̃ > 0 a positive constant,

E

[
max

1≤j≤p
| 1
n

n∑
i=1

(X
(j)
i )2 − E[(X

(j)
i )2]|

]
≤ C̃[

√
log p√
n

+

√
EM2

X2 log p

n
] = Op(

√
log p

n
)(7.2)

Let c = arg max1≤j≤p(
1
n

∑n
i=1(X

(j)
i )2 − E[(X

(j)
i )2])

max
1≤j≤p

(
1

n

n∑
i=1

(X
(j)
i )2 − C2

2 ) ≤ max
1≤j≤p

(
1

n

n∑
i=1

(X
(j)
i )2 − E[(X

(c)
i )2])

= max
1≤j≤p

(
1

n

n∑
i=1

(X
(j)
i )2 − E[(X

(j)
i )2])

≤ max
1≤j≤p

| 1
n

n∑
i=1

(X
(j)
i )2 − E[(X

(j)
i )2]|

(7.3)

Combine (7.1) with (7.2),

P

 max
1≤j≤p

| 1
n

n∑
i=1

(X
(j)
i )2 − E[(X

(j)
i )2]| ≥ 2C̃[

√
log p√
n

+

√
EM2

X2 log p

n
] +

√
log p√
n

 ≤ 1

pC̃
+ C̃

EM2
X2

n log p

(7.4)

To get the first part of the lemma, we combine the above display with Assumption 1 (ii), (3.1) and

(7.3)

P{Ac1} =P

{
max

1≤j≤p

1

n

n∑
i=1

(X
(j)
i )2 − C2

2 > C

√
log p√
n

}

≤P

{
max

1≤j≤p
| 1
n

n∑
i=1

(X
(j)
i )2 − E[(X

(j)
i )2]| ≥ C

√
log p√
n

}
≤ 1

pC̃
+ C̃

EM2
X2

n log p
= op(1)

(7.5)

Therefore we have proved the first part of the lemma.

25



Next, consider A2. ‖(X(j)
i (t0))2‖2n = 1

n

∑n
i=1((X

(j)
i (t0))2)2. Lemma E.2(ii) of Chernozhukov

et al. (2017) provides (set η = 1 and s = 2 in their Lemma):

P

{
max

1≤j≤p
| 1
n

n∑
i=1

(X
(j)
i (t0))2 − E[(X

(j)
i (t0))2]| ≥ 2E

[
max

1≤j≤p
| 1
n

n∑
i=1

(X
(j)
i (t0))2 − E[(X

(j)
i (t0))2]|

]
+
t

n

}

≤ exp {− t2

3nmax1≤j≤p V ar[(X
(j)
i (t0))2]

}+ C̃
EM2

Xt0

t2
, Set t = (n log p)1/2,then we have

≤ 1

pC̃
+ C̃

EM2
Xt0

n log p

(7.6)

for a positive constant, C̃ > 0. With Assumption 1, Lemma E.1 of Chernozhukov et al. (2017)

provides, with C̃ > 0 a positive constant,

E

[
max

1≤j≤p
| 1
n

n∑
i=1

(X
(j)
i (t0))2 − E[(X

(j)
i (t0))2]|

]
≤ C̃[

√
log p√
n

+

√
EM2

Xt0
log p

n
] = Op(

√
log p

n
)(7.7)

Let c = arg min1≤j≤p(E[(X
(j)
i (t0))2]− 1

n

∑n
i=1(X

(j)
i (t0))2)

C2
3 − min

1≤j≤p

1

n

n∑
i=1

(X
(j)
i (t0))2 ≤ min

1≤j≤p
(E[(X

(c)
i (t0))2]− 1

n

n∑
i=1

(X
(j)
i (t0))2)

= min
1≤j≤p

(E[(X
(j)
i (t0))2]− 1

n

n∑
i=1

(X
(j)
i (t0))2)

≤ max
1≤j≤p

| 1
n

n∑
i=1

(X
(j)
i (t0))2 − E[(X

(j)
i (t0))2]|

(7.8)

Combine (7.6) with (7.7),

P

 max
1≤j≤p

| 1
n

n∑
i=1

(X
(j)
i (t0))2 − E[(X

(j)
i (t0))2]| ≥ 2C̃[

√
log p√
n

+

√
EM2

Xt0
log p

n
] +

√
log p√
n

 ≤ 1

pC̃
+ C̃

EM2
Xt0

n log p

(7.9)

To get the probability of event A2, we combine the above display with Assumption 1 (ii) , (3.1) and
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(7.8)

P{Ac2} =P

{
C2

3 − min
1≤j≤p

1

n

n∑
i=1

(X
(j)
i (t0))2 > C

√
log p√
n

}

≤P

{
max

1≤j≤p
| 1
n

n∑
i=1

(X
(j)
i (t0))2 − E[(X

(j)
i (t0))2]| ≥ C

√
log p√
n

}

≤ 1

pC̃
+ C̃

EM2
Xt0

n log p
= op(1)

(7.10)

Therefore we have proved the lemma.

Define the events

A3 :=

{
max

1≤j≤p

1∥∥X(j)
∥∥
n

1

n

n∑
i=1

UiX
(j)
i ≤ µλ

2

}
,

A4 :=

{
max

1≤j≤p
sup
τ∈T

1∥∥X(j)(τ)
∥∥
n

1

n

n∑
i=1

UiX
(j)
i 1{Qi < τ} ≤ µλ

2

}
,

Next we provide a lower bound on the probabilities of A1 ∩ A2 with a suitable choice of λ.

Lemma 4 (Probability of A3∩A4). Conditional on the eventsA1∩A2, let Assumption 1 be satisfied

and set λ by (3.1). Then

P{A3 ∩ A4} ≥ 1−
(

1

pC̃5

+ C̃6
EM2

UX

(nlog p)

)
−
(

1

(pn)C̃7

+ C̃8
EM2

UX

(n log pn)

)
.

Proof of Lemma 4. With Assumption 1, Lemma E.1 of Chernozhukov et al. (2017) yields, with

C̃ > 0 a positive constant,

P

{
max

1≤j≤p
| 1
n

n∑
i=1

UiX
(j)
i − E[(UiX

(j)
i ]| ≥ 2E

[
max

1≤j≤p
| 1
n

n∑
i=1

UiX
(j)
i − E[(UiX

(j)
i ]|

]
+
t

n

}

≤ exp {− t2

3nmax1≤j≤p V ar[UiX
(j)
i ]
}+ C̃

EM2
UX

t2
, set t = (n log p)1/2,then we have

≤ 1

pC̃
+ C̃

EM2
UX

n log p
= op(1)

(7.11)

Lemma E.2(ii) of Chernozhukov et al. (2017) provides (set η = 1 and s = 2 in their Lemma) with

C̃ > 0 a positive constant,

E

[
max

1≤j≤p
| 1
n

n∑
i=1

UiX
(j)
i − E[(UiX

(j)
i ]|

]
≤ C̃[

√
log p√
n

+

√
EM2

UX log p

n
] = Op(

√
log p

n
)(7.12)
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Using that we are on the set on A1,

max
1≤j≤p

1∥∥X(j)
∥∥
n

1

n

n∑
i=1

UiX
(j)
i ≤ 1

min1≤j≤p
∥∥X(j)

∥∥
n

max
1≤j≤p

1

n

n∑
i=1

UiX
(j)
i ≤ 1√

C2
3 − µλ

max
1≤j≤p

1

n

n∑
i=1

UiX
(j)
i

(7.13)

Combine (7.11) with (7.12),

P

{
max

1≤j≤p
| 1
n

n∑
i=1

UiX
(j)
i | ≥ 2C̃[

√
log p√
n

+
(EM2

UX)1/2 log p

n
] +

√
log p√
n

}
≤ 1

pC̃
+ C̃

EM2
UX

n log p
= op(1),

Then,

P{Ac3} =P

{
max

1≤j≤p

1∥∥X(j)
∥∥
n

1

n

n∑
i=1

UiX
(j)
i >

µC

2

√
log p√
n

}

≤P

{
max

1≤j≤p

1

n

n∑
i=1

UiX
(j)
i ≥ µC

2

√
C2

3 − µλ
√

log p√
n

}

≤P

{
max

1≤j≤p

1

n

n∑
i=1

UiX
(j)
i ≥ C̃

√
log p√
n

}
+ op(1)

≤ 1

pC̃
+ C̃

EM2
UX

n log p
+ op(1) = op(1)

This shows also that

max
1≤j≤p

∣∣∣∣∣ 1∥∥X(j)
∥∥
n

1

n

n∑
i=1

UiX
(j)
i

∣∣∣∣∣ = Op(

√
log p√
n

)(7.14)

Next, consider the event A4. To show the sup norm over τ , we adapt the proof of equitation (A.1)

and (A.2) in Lemma A.1 of Callot et al. (2017) to our purpose. Conditional on A4, then sort

{Xi, Ui, Qi}ni=1 by (Q1, · · ·Qn) in ascending order, for j = 1, · · · p,

P

{
max

1≤j≤p
sup
τ∈T

1∥∥X(j)(τ)
∥∥
n

| 1
n

n∑
i=1

UiX
(j)
i (τ)| ≥ t

}

≤P

{
1

min1≤j≤p
∥∥X(j)(t0)

∥∥
n

max
1≤j≤p

sup
τ∈T
| 1
n

n∑
i=1

UiX
(j)
i (τ)| ≥ t

}

=P

{
max

1≤j≤p
max

1≤k≤n
| 1
n

k∑
i=1

UiX
(j)
i | ≥ t min

1≤j≤p

∥∥∥X(j)(t0)
∥∥∥
n

}

≤P

{
max

1≤j≤p
max

1≤k≤n
| 1
n

k∑
i=1

UiX
(j)
i | ≥ t

√
C2

3 − µλ

}
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Denote a deterministic upper triangular matrix with all ones

(7.15) Ξn,n =


1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 1

 ,

and let ξ
(k)
i is the i-th row, k-th column element of Ξn,n, then

max
1≤j≤p

max
1≤k≤n

|
k∑
i=1

UiX
(j)
i | = max

1≤j≤p
max

1≤k≤n
|
n∑
i=1

UiX
(j)
i ξ

(k)
i |

UiX
(j)
i ξ

(k)
i is independent centered random variable(not identical),

max
1≤j≤p

max
1≤k≤n

|
k∑
i=1

UiX
(j)
i | = max

1≤j≤p
max

1≤k≤n
|
n∑
i=1

UiX
(j)
i ξ

(k)
i |

UiX
(j)
i ξ

(k)
i is independent centered random variable(not identical),

max1≤j≤p max1≤k≤n
∑n
i=1 V ar[UiX

(j)
i ξ

(k)
i ]

n =
max1≤j≤p max1≤k≤n

∑k
i=1 V ar[UiX

(j)
i ]

n ≤ max1≤j≤p
∑n
i=1 V ar[UiX

(j)
i ]

n = max1≤j≤p V ar[UiX
(j)
i ] < ∞ and

max1≤j≤p max1≤i≤k≤n |UiX(j)
i ξ

(k)
i | < MUX . So under assumption 1, conditions for maximal in-

equalities are stratified automatically. Lemma E.2(ii) of Chernozhukov et al. (2017) provides (set

η = 1 and s = 2 in their Lemma) with C̃ > 0 a positive constant,

P

{
max

1≤j≤p
max

1≤k≤n
|
n∑
i=1

UiX
(j)
i ξ

(k)
i | ≥ 2E

[
max

1≤j≤p
max

1≤k≤n
|
n∑
i=1

UiX
(j)
i ξ

(k)
i |

]
+ t

}

≤ exp {− t2

3 max1≤j≤p max1≤k≤n
∑n
i=1 V ar[UiX

(j)
i ξ

(k)
i ]
}+ C̃

EM2
UX

t2
, set t = (n log pn)1/2,then we have

≤ 1

(pn)C̃
+ C̃

EM2
UX

(n log pn)

(7.16)

With Assumption 1, Lemma E.1 of Chernozhukov et al. (2017) yields, with C̃ > 0 a positive constant,

E

[
max

1≤j≤p
max

1≤k≤n
|
n∑
i=1

UiX
(j)
i ξ

(k)
i |

]

≤

√√√√ max
1≤j≤p

max
1≤k≤n

n∑
i=1

V ar[UiX
(j)
i ξ

(k)
i ]
√

log pn+
√
EM2

UX log pn

≤C̃
√
n log(pn) +

√
EM2

UX log pn = Op(
√
n log(pn))

(7.17)
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Combine (7.16) with (7.17) and we consider p > n,

P

{
max

1≤j≤p
max

1≤k≤n
| 1
n

n∑
i=1

UiX
(j)
i ξ

(k)
i | ≥ 2C̃[

√
log(pn)√
n

+

√
EM2

UX log(pn)

n
] +

√
log(pn)√
n

}

≤P

{
max

1≤j≤p
max

1≤k≤n
| 1
n

n∑
i=1

UiX
(j)
i ξ

(k)
i | ≥ 2C̃[

√
log p√
n

+

√
EM2

UX log p

n
] +

√
log p√
n

}

≤ 1

(pn)C̃
+ C̃

EM2
UX

(n log(pn))
,

Taking expectations over (Q1, · · ·Qn) and set λ by (3.1) yields,

P{Ac4} = P

{
max

1≤j≤p
sup
τ∈T

1∥∥X(j)(τ)
∥∥
n

1

n

n∑
i=1

UiX
(j)
i 1{Qi < τ} ≥ µC

2

√
log p√
n

}

≤ P

{
max

1≤j≤p
sup
τ∈T

1

n

n∑
i=1

UiX
(j)
i 1{Qi < τ} ≥ µC

2

√
C2

3 − µλ
√

log p√
n

}

≤ 1

(pn)C̃
+ C̃

EM2
UX

(n log pn)
= op(1)

(7.18)

This shows that∣∣∣∣∣ max
1≤j≤p

sup
τ∈T

1∥∥X(j)(τ)
∥∥
n

1

n

n∑
i=1

UiX
(j)
i 1{Qi < τ}

∣∣∣∣∣ = Op(

√
log p√
n

)(7.19)

Since P{A3 ∩ A4} ≥ 1− P{Ac3} − P{Ac4}, we have proved the lemma.

Define J0 := J(α0), D̂ = D̂(τ̂), D = D(τ0) and Rn := Rn(α0, τ0), where

Rn(α, τ) := 2n−1
n∑
i=1

UiX
′
iδ {1(Qi < τ̂)− 1(Qi < τ)} .

Lemma 5. Conditional on the events A1, A2, A3 and A4, for 0 < µ < 1 we have

(7.20)
∥∥∥f̂ − f0

∥∥∥2

n
+ (1− µ)λ

∥∥∥D̂(α̂− α0)
∥∥∥

1
≤ 2λ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1

+
∥∥f(α0,τ̂) − f0

∥∥2

n
.

Proof of Lemma 5. We begin by noting that (2.4)

Ŝn + λ
∥∥∥D̂α̂∥∥∥

1
≤ Sn(α, τ) + λ ‖D(τ)α‖1(7.21)

Ŝn − Sn(α, τ) ≤ λ ‖D(τ)α‖1 − λ
∥∥∥D̂α̂∥∥∥

1
(7.22)
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for all (α, τ) ∈ R2p × T. Inserting (2.3) to left side of (7.22)

Ŝn − Sn(α, τ)

= n−1 ‖y −X(τ̂)α̂‖22 − n
−1 ‖y −X(τ)α‖22

= n−1
n∑
i=1

[Ui − (Xi(τ̂)′α̂−Xi(τ0)′α0)]
2 − n−1

n∑
i=1

[Ui − (Xi(τ)′α−Xi(τ0)′α0)]
2

= n−1
n∑
i=1

{Xi(τ̂)′α̂−Xi(τ0)′α0}
2 − n−1

n∑
i=1

{Xi(τ)′α−Xi(τ0)′α0}
2

− 2n−1
n∑
i=1

Ui {Xi(τ̂)′α̂−Xi(τ)′α}

=
∥∥∥f̂ − f0

∥∥∥2

n
−
∥∥f(α,τ) − f0

∥∥2

n

− 2n−1
n∑
i=1

UiX
′
i(β̂ − β)− 2n−1

n∑
i=1

Ui

{
X ′i δ̂1(Qi < τ̂)−X ′iδ1(Qi < τ)

}
.

Further, the last term on the right side of above can be written as

n−1
n∑
i=1

Ui

{
X ′i δ̂1(Qi < τ̂)−X ′iδ1(Qi < τ)

}
= n−1

n∑
i=1

UiX
′
i(δ̂ − δ)1(Qi < τ̂) + n−1

n∑
i=1

UiX
′
iδ {1(Qi < τ̂)− 1(Qi < τ)} .

Then, (7.22) can be bounded as follows:∥∥∥f̂ − f0

∥∥∥2

n
≤
∥∥f(α,τ) − f0

∥∥2

n
+ λ ‖D(τ)α‖1 − λ

∥∥∥D̂α̂∥∥∥
1

+ 2n−1
n∑
i=1

UiX
′
i(β̂ − β) + 2n−1

n∑
i=1

UiX
′
i(δ̂ − δ)1(Qi < τ̂)

+ 2n−1
n∑
i=1

UiX
′
iδ {1(Qi < τ̂)− 1(Qi < τ)} .

Conditional on the events A1, A2, A3 and A4, we have

∥∥∥f̂ − f0

∥∥∥2

n
≤
∥∥f(α,τ) − f0

∥∥2

n
+ µλ

p∑
j=1

∥∥∥X(j)
∥∥∥
n

(β̂j − βj) + µλ

p∑
j=1

∥∥∥X(j)(τ̂)
∥∥∥
n

(δ̂j − δj)

+ λ ‖D(τ)α‖1 − λ
∥∥∥D̂α̂∥∥∥

1
+Rn(α, τ)

≤
∥∥f(α,τ) − f0

∥∥2

n
+ µλ

∥∥∥D̂(α̂− α)
∥∥∥

1
+ λ ‖D(τ)α‖1 − λ

∥∥∥D̂α̂∥∥∥
1

+Rn(α, τ)

(7.23)
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for all (α, τ) ∈ R2p × T. Note the fact that∣∣∣α̂(j) − α(j)
0

∣∣∣+
∣∣∣α(j)

0

∣∣∣− ∣∣∣α̂(j)
∣∣∣ = 0 for j /∈ J0(7.24)

∥∥∥D̂(α̂− α0)
∥∥∥

1
=

∥∥∥∥[D̂(α̂− α0)
]
J0

∥∥∥∥
1

+

∥∥∥∥[D̂(α̂− α0)
]
JC0

∥∥∥∥
1

=

∥∥∥∥[D̂(α̂− α0)
]
J0

∥∥∥∥
1

+

∥∥∥∥[D̂α̂]
JC0

∥∥∥∥
1

,

(7.25)

‖Dα0‖1 −
∥∥∥D̂α̂∥∥∥

1
=
∥∥[Dα0]J0

∥∥
1
−
∥∥∥∥[D̂α̂]

J0

∥∥∥∥
1

−
∥∥∥∥[D̂α̂]

JC0

∥∥∥∥
1

=
∥∥[Dα0]J0

∥∥
1
−
∥∥∥∥[D̂α0

]
J0

∥∥∥∥
1

+

∥∥∥∥[D̂α0

]
J0

∥∥∥∥
1

−
∥∥∥∥[D̂α̂]

J0

∥∥∥∥
1

−
∥∥∥∥[D̂α̂]

JC0

∥∥∥∥
1

using triangle inequality ≤
∣∣∣∣∥∥[Dα0]J0

∥∥
1
−
∥∥∥∥[D̂α0

]
J0

∥∥∥∥
1

∣∣∣∣+

∥∥∥∥[D̂(α̂− α0)
]
J0

∥∥∥∥
1

−
∥∥∥∥[D̂α̂]

JC0

∥∥∥∥
1

=
∣∣∣‖Dα0‖1 −

∥∥∥D̂α0

∥∥∥
1

∣∣∣+

∥∥∥∥[D̂(α̂− α0)
]
J0

∥∥∥∥
1

−
∥∥∥∥[D̂α̂]

JC0

∥∥∥∥
1

.

(7.26)

Consider (7.20), conditional on the events A1, A2, A3 and A4, add (1−µ)λ
∥∥∥D̂(α̂− α)

∥∥∥
1

on both

sides of (7.23)(evaluating at (α, τ) = (α0, τ̂), Rn(α0, τ̂) = 0),to get

‖f̂ − f0‖2n + (1− µ)λ
∥∥∥D̂(α̂− α)

∥∥∥
1

≤λ
(∥∥∥D̂(α̂− α0)

∥∥∥
1

+
∥∥∥D̂α0

∥∥∥
1
−
∥∥∥D̂α̂∥∥∥

1

)
+
∥∥f(α0,τ̂) − f0

∥∥2

n

using (7.25) and (7.26)

≤λ
(∥∥∥∥[D̂(α̂− α0)

]
J0

∥∥∥∥
1

+

∥∥∥∥[D̂α̂]
JC0

∥∥∥∥
1

+
∣∣∣‖Dα0‖1 −

∥∥∥D̂α0

∥∥∥
1

∣∣∣+

∥∥∥∥[D̂(α̂− α0)
]
J0

∥∥∥∥
1

−
∥∥∥∥[D̂α̂]

JC0

∥∥∥∥
1

)
+
∥∥f(α0,τ̂) − f0

∥∥2

n

≤2λ

∥∥∥∥[D̂(α̂− α0)
]
J0

∥∥∥∥
1

+
∥∥f(α0,τ̂) − f0

∥∥2

n
,

which proves (7.20).

We are ready to establish the prediction consistency of the LASSO estimator.

Proof of Lemma 1. Conditional on the events A1, A2, A3 and A4, add (1− µ)λ
∥∥∥D̂(α̂− α)

∥∥∥
1

on
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both sides of (7.23) (evaluating at (α, τ) = (α0, τ0), f̂(α0, τ̂)− f0 = 0),to get

∥∥∥f̂ − f0

∥∥∥2

n
+ (1− µ)λ

∥∥∥D̂(α̂− α0)
∥∥∥

1

≤λ
(∥∥∥D̂(α̂− α0)

∥∥∥
1

+
∥∥∥D̂α0

∥∥∥
1
−
∥∥∥D̂α̂∥∥∥

1

)
+Rn

using (7.25) and (7.26)

≤λ
(∥∥∥∥[D̂(α̂− α0)

]
J0

∥∥∥∥
1

+

∥∥∥∥[D̂α̂]
JC0

∥∥∥∥
1

+
∣∣∣‖Dα0‖1 −

∥∥∥D̂α0

∥∥∥
1

∣∣∣+

∥∥∥∥[D̂(α̂− α0)
]
J0

∥∥∥∥
1

−
∥∥∥∥[D̂α̂]

JC0

∥∥∥∥
1

)
+Rn

≤2λ

∥∥∥∥[D̂(α̂− α0)
]
J0

∥∥∥∥
1

+ λ
∣∣∣‖D̂α0‖1 − ‖Dα0‖1

∣∣∣+Rn,

(7.27)

The 3 terms on the right side can be bounded as follows using Hölder’s inequality :

|Rn| ≤ 2µλ

p∑
j=1

∥∥∥X(j)
∥∥∥
n
|δ(j)

0 | ≤ 2µ ‖δ0‖1 λ
√
C2

2 + µλ.,(7.28) ∥∥∥D̂(α̂− α0)J0

∥∥∥
1
≤
∥∥∥D̂∥∥∥

∞
‖(α̂− α0)J0‖1 ≤ ‖(α̂− α0)J0‖1

√
C2

2 + µλ,(7.29) ∣∣∣‖D̂α0‖1 − ‖Dα0‖1
∣∣∣ ≤ ∥∥∥(D̂−D)α0

∥∥∥
1
≤
∥∥∥D̂−D

∥∥∥
∞
‖α0‖1 ≤ 2 ‖α0‖1

√
C2

2 + µλ(7.30)

Combine (7.28), (7.29) and (7.30) with (7.27) yields∥∥∥f̂ − f0

∥∥∥2

n
≤
(

2 ‖(α̂− α0)J0‖1 + 2 ‖α0‖1 + 2µ ‖δ0‖1
)
λ
(
C2

2 + µλ
) 1

2

≤(6 + 2µ)C1

(
C2

2 + µλ
) 1

2 s0λ

which is (3.2).

7.3 Proofs for Section 3.1

Our first result is a preliminary lemma that can be used to prove adaptive restricted eigenvalue

condition.

Lemma 6. Let Assumptions 1 hold, for a universal constant C > 0,∥∥∥∥ 1

n
X ′iXi − E [X ′iXi]

∥∥∥∥
∞
≤ C
√

log p√
n

with probability at least 1−
(

1
p2C̃

+ C̃
EM2

XX

n log p2

)
,

sup
τ∈T

∥∥∥∥ 1

n
Xi(τ)′Xi(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞
≤ C
√

log p√
n

with probability at least 1−
(

1
(p2n)C̃

+ C̃
EM2

XX

(n log p2n)

)
.
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Proof. With Assumption 1, Lemma E.2(ii) of Chernozhukov et al. (2017) with C̃ > 0 a positive

constant provides (set η = 1 and s = 2 in their Lemma) :

P

{
max

1≤j,l≤p
| 1
n

n∑
i=1

X
(j)
i X

(l)
i − E[(X

(j)
i X

(l)
i ]| ≥ 2E

[
max

1≤j,l≤p
| 1
n

n∑
i=1

X
(j)
i X

(l)
i − E[(X

(j)
i X

(l)
i ]|

]
+
t

n

}

≤ exp {− t2

3nmax1≤j≤p V ar[X
(l)
i X

(j)
i ]
}+ C̃

EM2
XX

t2
, set t = (n log p2)1/2,then we have

≤ 1

p2C̃
+ C̃

EM2
XX

n log p2
= op(1)

(7.31)

Lemma E.1 of Chernozhukov et al. (2017) with C̃ > 0 a positive constant yields:

E

[
max

1≤j,l≤p
| 1
n

n∑
i=1

X
(j)
i X

(j)
i − E[(X

(j)
i X

(j)
i ]

]
≤ C̃[

√
log p2

√
n

+

√
EM2

XX log p2

n
] = Op(

√
log p

n
),

(7.32)

with C̃ > 0 a positive constant. Combine (7.31) with (7.32),

P

{
max

1≤j≤p
max

1≤l≤p
| 1
n

n∑
i=1

X
(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]| ≥ 2C̃[

√
log p2

√
n

+

√
EM2

XX log p2

n
] +

√
log p2

√
n

}

=P

{
max

1≤j≤p
max

1≤l≤p
| 1
n

n∑
i=1

X
(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]| ≥

[
2C̃

(
1 +

(EM2
XX)1/2

√
log p2

√
n

)
+ 1

] √
log p2

√
n

}

≤ 1

p2C̃
+ C̃

EM2
XX

n log p2
= op(1),

This shows that

max
1≤j≤p

max
1≤l≤p

| 1
n

n∑
i=1

X
(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]| = Op(

√
log p√
n

)

Next, to show the sup norm over τ , we adapt the proof of equitation (A.1) in Lemma A.1 of

Callot et al. (2017) to our purpose.

Sort (Xi, Ui, Qi) i = {1 · · ·n} by (Q1, · · ·Qn) in ascending order, then

P

{
max

1≤j,l≤p
sup
τ∈T
| 1
n

n∑
i=1

(
X

(j)
i X

(l)
i 1 (Qi < τ)− 1 (Qi < τ)E[X

(j)
i X

(l)
i ]
)
| ≥ t

}

≤P

{
max

1≤j,l≤p
max

1≤k≤n
| 1
n

k∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)

)| ≥ t

}(7.33)
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Recall matrix Ξn,n in (7.15), and ξ
(k)
i which is the i-th row, k-th column element of it, then

max
1≤j,l≤p

max
1≤k≤n

| 1
n

k∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)

)| = max
1≤j,l≤p

max
1≤k≤n

| 1
n

n∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i |

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i is independent centered random variable (not identical) across i,

max1≤j,l≤p max1≤k≤n
∑n
i=1 var[

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i ]

n

≤
max1≤j,l≤p

∑n
i=1 var[

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)

]

n
<∞,

max
1≤j,l≤p

max
1≤i,k≤n

|
(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i |

≤ max
1≤j,l≤p

max
1≤i≤n

|X(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]| = MXX .

So under assumption 1, conditions for maximal inequalities are stratified automatically. We can

apply a 3-layer Maximal Inequalities over j, l, k. Lemma E.2(ii) of Chernozhukov et al. (2017) (set

η = 1 and s = 2 in their Lemma) with C̃ > 0 a positive constant yields:

P

{
max

1≤j,l≤p
max

1≤k≤n
|
n∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i | ≥ 2E

[
max

1≤j,l≤p
max

1≤k≤n
|
n∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i |

]
+ t

}

≤ exp {− t2

3 max1≤j,l≤p
∑n
i=1 var[

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i ]
}+ C̃

EM2
XX

t2
, set t = [n log(p2n)]1/2,then we have

≤ 1

(p2n)C̃
+ C̃

EM2
XX

(n log(p2n))

(7.34)

Lemma E.1 of Chernozhukov et al. (2017) provides:

E

[
max

1≤j,l≤p
max

1≤k≤n
|
n∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i |

]
≤ C̃(

√
n
√

log(p2n) +
√
EM2

XX log(p2n)) = Op(
√
n log(p2n))

(7.35)
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Combine (7.34) with (7.35),

P

{
max

1≤j,l≤p
max

1≤k≤n
| 1
n

n∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i | ≥ 2C̃[

√
log(p2n)√

n
+

√
EM2

XX log(p2n)

n
] +

√
log(p2n)√

n

}

≤P

{
max

1≤j,l≤p
max

1≤k≤n
| 1
n

n∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i | ≥

[
2C̃

(
1 +

(EM2
XX)1/2

√
log(p2n)√

n

)
+ 1

] √
log(p2n)√

n

}

≤ 1

(p2n)C̃
+ C̃

EM2
XX

(n log(p2n))
,

Then plug-in t =

[
2C̃

(
1 +

(EM2
XX)1/2

√
log(p2n)√

n

)
+ 1

] √
log(p2n)√

n
in(7.33) and take expectations over

(Q1, · · · , Qn) ∈ (0, 1) yields,

P{ max
1≤j,l≤p

sup
τ∈T
| 1
n

n∑
i=1

X
(j)
i X

(l)
i 1 (Qi < τ)− E[1 (Qi < τ)]E[X

(j)
i X

(l)
i ]|

≥

[
2C̃

(
1 +

(EM2
XX)1/2

√
log(p2n)√

n

)
+ 1

] √
log(p2n)√

n
}

=P{ max
1≤j,l≤p

sup
τ∈T
| 1
n

n∑
i=1

X
(j)
i X

(l)
i 1 (Qi < τ)− E[1 (Qi < τ)]E[X

(j)
i X

(l)
i ]|

≥

[
2C̃

(
1 +

(EM2
XX)1/2

√
log(p2n)√

n

)
+ 1

] √
log(p2n)√

n
| (Q1, · · ·Qn)}

≤P

{
max

1≤j,l≤p
max

1≤k≤n
| 1
n

k∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)

)| ≥

[
2C̃

(
1 +

(EM2
XX)1/2

√
log(p2n)√

n

)
+ 1

] √
log(p2n)√

n

}

≤P

{
max

1≤j,l≤p
max

1≤k≤n
| 1
n

n∑
i=1

(
X

(j)
i X

(l)
i − E[X

(j)
i X

(l)
i ]
)
ξ

(k)
i | ≥

[
2C̃

(
1 +

(EM2
XX)1/2

√
log(p2n)√

n

)
+ 1

] √
log(p2n)√

n

}

≤ 1

(p2n)C̃
+ C̃

EM2
XX

(n log(p2n))
= op(1).

(7.36)

By Assumption 1,[
2C̃

(
1 +

(EM2
XX)1/2

√
log(p2n)√

n

)
+ 1

] √
log(p2n)√

n
= Op

(√
log p√
n

+

√
log n√
n

)
.

If we consider p >> n,[
2C̃

(
1 +

(EM2
XX)1/2

√
log(p2n)√

n

)
+ 1

] √
log(p2n)√

n
= Op

(√
log p√
n

)
.
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This shows that

sup
τ∈T

max
1≤j,l≤p

| 1
n

n∑
i=1

X
(j)
i X

(l)
i 1 (Qi < τ)− E[(X

(j)
i X

(l)
i 1 (Qi < τ)]| = Op(

√
log p√
n

)

Define κ̂(s0, c0,T, Σ̂) = min
τ∈T

min
J0⊂{1,...,2p},|J0|≤s0

min
γ 6=0,‖γJc0 ‖1≤c0‖γJ0‖1

(γ′ 1nX(τ)′X(τ)γ)1/2

‖γJ0‖2

and recall Assumption 2 (3.3)

κ(s0, c0,T,Σ) = min
τ∈T

min
J0⊂{1,...,2p},|J0|≤s0

min
γ 6=0,‖γJc0 ‖1≤c0‖γJ0‖1

(γ′E [Xi(τ)′Xi(τ)] γ)1/2

‖γJ0‖2
> 0.

Define the event

A5 :=

{
κ(s0, c0,T, Σ̂)2

2
< κ̂(c0,T,Σ)

2

}

The next lemma provides a lower bound on the probability of set A5.

Lemma 7. Let Assumptions 1-2 be satisfied,

P {A5} ≥ 1− (
1

(p2)C̃
+ C̃

EM2
XX

(n log p2)
)− (

1

(p2n)C̃
+ C̃

EM2
XX

(n log(p2n))
).

Proof of Lemma 7. Start with∣∣∣∣γ′ 1nX(τ)′X(τ)γ

∣∣∣∣ =

∣∣∣∣γ′( 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)] + E [Xi(τ)′Xi(τ)]

)
γ

∣∣∣∣(7.37)

≥ |γ′E [Xi(τ)′Xi(τ)] γ| −
∣∣∣∣γ′( 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

)
γ

∣∣∣∣(7.38)

by Holders’ inequality∣∣∣∣γ′( 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

)
γ

∣∣∣∣ ≤ ‖γ‖21 ∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞

(7.39)

Note that we have the restriction set definition

‖γ‖1 ≤ ‖γJ0‖1 +
∥∥γJc0∥∥1

≤ (1 + c0) ‖γJ0‖1 ≤ (1 + c0)
√
s0 ‖γJ0‖2(7.40)

37



So
‖γ‖1
‖γJ0‖2

≤ (1 + c0)
√
s0. Then divide (7.39) by ‖γJ0‖

2
2 we have

∣∣∣∣∣
∣∣γ′ 1nX(τ)′X(τ)γ

∣∣
‖γJ0‖

2
2

− |γ
′E [Xi(τ)′Xi(τ)] γ|

‖γJ0‖
2
2

∣∣∣∣∣ ≤ ‖γ‖21
‖γJ0‖

2
2

∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞

(7.41)

≤ (1 + c0)2s0

∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞

(7.42)

Since

|γ′E [Xi(τ)′Xi(τ)] γ|
‖γJ0‖

2
2

−
∣∣γ′ 1nX(τ)′X(τ)γ

∣∣
‖γJ0‖

2
2

≤

∣∣∣∣∣
∣∣γ′ 1nX(τ)′X(τ)γ

∣∣
‖γJ0‖

2
2

− |γ
′E [Xi(τ)′Xi(τ)] γ|

‖γJ0‖
2
2

∣∣∣∣∣(7.43)

We obtain

∣∣γ′ 1nX(τ)′X(τ)γ
∣∣

‖γJ0‖
2
2

≥ |γ
′E [Xi(τ)′Xi(τ)] γ|

‖γJ0‖
2
2

− (1 + c0)2s0

∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞

(7.44)

Minimize over τ ∈ T on right side,

∣∣γ′ 1nX(τ)′X(τ)γ
∣∣

‖γJ0‖
2
2

≥ min
τ∈T

|γ′E [Xi(τ)′Xi(τ)] γ|
‖γJ0‖

2
2

− (1 + c0)2s0 sup
τ∈T

∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞

(7.45)

Minimize over
{
γ ∈ R2p \ 0

}
on right side,∣∣γ′ 1nX(τ)′X(τ)γ

∣∣
‖γJ0‖

2
2

≥ κ(c0,T,Σ)2 − (1 + c0)2s0 sup
τ∈T

∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞

(7.46)

The above inequality is ture for all τ ∈ T and
{
γ ∈ R2p \ 0

}
, so minimize over τ ∈ T and

{
γ ∈ R2p \ 0

}
on left side we obtain,

κ̂(c0,T, Σ̂)2 ≥ κ(c0,T,Σ)2 − (1 + c0)2s0 sup
τ∈T

∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞

(7.47)

So if we can prove that with probability approaching one, (1+c0)2s0 supτ∈T
∥∥ 1
nX(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥
∞ ≤

κ(c0,T,Σ)2

2 , that will imply of κ(c0,T,Σ)2

2 ≤ κ̂(c0,T, Σ̂)
2

with probability approaching one.

Next, by Lemma 6

sup
τ∈T

∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞

= Op(

√
log p√
n

)
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P
{

(1 + c0)2s0 sup
τ∈T

∥∥∥∥ 1

n
X(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥∥∥
∞
≥ (1 + c0)2s0C̃

√
log p√
n

}
= o(1),(7.48)

We get with probability approaching one, (1 + c0)2s0 supτ∈T
∥∥ 1
nX(τ)′X(τ)− E [Xi(τ)′Xi(τ)]

∥∥
∞ <

(1+c0)2s0C̃
√

log p√
n
≤ κ(c0,T,Σ)2/2 , since left side of that inequality converges to zero in probability,

and the right side is constant. Then by (7.48) and (7.47)

P {A5} ≥ 1− o(1).(7.49)

Lemma 8. Suppose that δ0 = 0. Let Assumption1 amd 2 hold with κ = κ( 1+µ
1−µ ,T,Σ) for µ ∈ (0, 1).

Let (α̂, τ̂) be the LASSO estimator defined by (2.4) with with λ = C
µ

√
log p√
n

. Then, conditional on

events A1, A2, A3, A4 and A5, we have

∥∥∥f̂ − f0

∥∥∥
n
≤ 2
√

2

κ

(√
C2

2 + µλ

)
√
s0λ,

‖α̂− α0‖1 ≤
4
√

2

(1− µ)κ2

C2
2 + µλ√
C2

3 − µλ
s0λ.

Proof of Lemma 8. Note that δ0 = 0 implies
∥∥f(α0,τ̂) − f0

∥∥2
= 0.Conditional on events A1, A2,

A3, A4 with (7.20), we have∥∥∥f̂ − f0

∥∥∥2

n
+ (1− µ)λ

∥∥∥D̂(α̂− α0)
∥∥∥

1
≤ 2λ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1
,(7.50)

which implies that ∥∥∥D̂(α̂− α0)Jc0

∥∥∥
1
≤ 1 + µ

1− µ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1
.(7.51)

As in Lemma 7, conditional on event A5, apply Assumption 2, specifically UARE κ = κ( 1+µ
1−µ ,T,Σ),

to yield

κ2
∥∥∥D̂(α̂− α0)J0

∥∥∥2

2
≤ 2κ̂(

1 + µ

1− µ
,T)2

∥∥∥D̂(α̂− α0)J0

∥∥∥2

2

≤ 2

n

∥∥∥X(τ̂)D̂(α̂− α0)
∥∥∥2

2

=
2

n
(α̂− α0)′D̂X(τ̂)′X(τ̂)D̂(α̂− α0)

≤ 2 max(D̂)2

n
(α̂− α0)′X(τ̂)′X(τ̂)(α̂− α0)

= 2 max(D̂)2
∥∥∥f̂ − f0

∥∥∥2

n
,

(7.52)
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where the last equality is due to the assumption that δ0 = 0.

Combining (7.50) with (7.52) yields∥∥∥f̂ − f0

∥∥∥2

n
≤
∥∥∥f̂ − f0

∥∥∥2

n
+ (1− µ)λ

∥∥∥D̂(α̂− α0)
∥∥∥

1
≤ 2λ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1

≤ 2λ
√
s0

∥∥∥D̂(α̂− α0)J0

∥∥∥
2
≤ 2
√

2λ

κ

√
s0 max(D̂)

∥∥∥f̂ − f0

∥∥∥
n
.

Cancel
∥∥∥f̂ − f0

∥∥∥
n

on the both sides of the inequality,

∥∥∥f̂ − f0

∥∥∥
n
≤ 2
√

2λ

κ

√
s0 max(D̂)

then conditional on A1,

∥∥∥f̂ − f0

∥∥∥
n
≤ 2
√

2

κ

(√
C2

2 + µλ

)
√
s0λ.

Next, conditional on A1, A3, A4 and A5, by (7.51)∥∥∥D̂ (α̂− α0)
∥∥∥

1
=
∥∥∥D̂(α̂− α0)J0

∥∥∥
1

+
∥∥∥D̂(α̂− α0)Jc0

∥∥∥
1

≤ 2 (1− µ)
−1
∥∥∥D̂(α̂− α0)J0

∥∥∥
1

≤ 2 (1− µ)
−1√

s0

∥∥∥D̂(α̂− α0)J0

∥∥∥
2

≤ 2

κ (1− µ)

√
s0 max(D̂)

∥∥∥f̂ − f0

∥∥∥
n

≤ 4
√

2λ

(1− µ)κ2
s0(max(D̂)2)

≤ 4
√

2λ

(1− µ)κ2
s0(C2

2 + µλ),

(7.53)

which proves the second conclusion of the lemma, since conditional on A4∥∥∥D̂ (α̂− α0)
∥∥∥

1
≥ min(D̂) ‖α̂− α0‖1 ≥

√
C2

3 − µλ ‖α̂− α0‖1 .(7.54)

‖α̂− α0‖1 ≤
4
√

2

(1− µ)κ2

C2
2 + µλ√
C2

3 − µλ
s0λ.(7.55)

Hence, the second conclusion of lemma follows give the lower bound on the probability of A1 ∩A2 ∩
A3 ∩ A4 ∩ A5.

Proof of Theorem 1. The proof follows immediately from combining Assumption 1 and 2 with Lemma
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8. In particular,

P{A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5} ≥ 1−
(

1

pC̃1

+ C̃2
EM2

X2

n log p

)
−
(

1

pC̃3

+ C̃4

EM2
Xt0

n log p

)
−
(

1

pC̃5

+ C̃6
EM2

UX

nlog p

)
−
(

1

(pn)C̃7

+ C̃8
EM2

UX

n log(pn)

)
−
(

1

p2C̃9

+ C̃10
EM2

XX

n log p2

)
−
(

1

(p2n)C̃11

+ C̃12
EM2

XX

n log(p2n)

)
.

7.4 Proofs for Section 3.2

The following lemma gives an upper bound of |τ̂ − τ0| using only Assumption 3, conditional on the

events A1, A2, A3 and A4.

Lemma 9. Suppose that Assumption 3 holds. Let

η∗ = max

{
min
i
|Qi − τ0| ,

1

C4

(
2C1(3 + µ)

(
C2

2 + µλ
) 1

2 s0λ
)}

where C4 is the constant defined in Assumption 3. Then conditional on the events A1, A2, A3 and

A4

|τ̂ − τ0| ≤ η∗.

Proof of Lemma 9. As in the proof of Lemma 5, we have, on the events A1 ,A2,A3 and A4

Ŝn − Sn(α0, τ0)

=
∥∥∥f̂ − f0

∥∥∥2

n
− 2n−1

n∑
i=1

UiX
′
i(β̂ − β0)− 2n−1

n∑
i=1

UiX
′
i(δ̂ − δ0)1(Qi < τ̂)−Rn

≥
∥∥∥f̂ − f0

∥∥∥2

n
− µλ

∥∥∥D̂(α̂− α0)
∥∥∥

1
−Rn.

(7.56)
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Then A1, A2, A3 and A4,[
Ŝn + λ

∥∥∥D̂α̂∥∥∥
1

]
− [Sn(α0, τ0) + λ ‖Dα0‖1]

≥
∥∥∥f̂ − f0

∥∥∥2

n
− λ

∥∥∥D̂(α̂− α0)
∥∥∥

1
− λ

[
‖Dα0‖1 −

∥∥∥D̂α̂∥∥∥
1

]
−Rn

using (7.25) and (7.26)

≥
∥∥∥f̂ − f0

∥∥∥2

n
− 2λ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1
− λ

∣∣∣‖Dα0‖1 −
∥∥∥D̂α̂∥∥∥

1

∣∣∣−Rn
using (7.28), (7.29) and (7.30) to bound the last three terms,

≥
∥∥∥f̂ − f0

∥∥∥2

n
−
(

6λ
√
C2

2 + µλC1s0 + 2µλ
√
C2

2 + µλC1s0

)
≥
∥∥∥f̂ − f0

∥∥∥2

n
−
(

2C1(3 + µ)
(
C2

2 + µλ
) 1

2 s0λ
)
≥ 0

by Lemma 1.

(7.57)

Suppose now that |τ̂ − τ0| > η∗, then Assumption 3 and (7.57) together imply that[
Ŝn + λ

∥∥∥D̂α̂∥∥∥
1

]
− [Sn(α0, τ0) + λ ‖Dα0‖1] ≥

∥∥∥f̂ − f0

∥∥∥2

n
− C4η

∗ > 0,

which leads to contradiction as τ̂ is the minimizer of (2.4). Therefore, we have proved the lemma.

The following lemma demonstrates that if our design satisfies Assumption 1, Assumption 4 is

automatic in our case.

Lemma 10 (Assumption 4). If Assumption 1 is satisfied, then for any η > C log p
n > 0, with C > 0,

there exists a finite constant C5 <∞, such that

P

{
sup

1≤j,l≤p
sup

|τ−τ0|<η

1

n

n∑
i=1

∣∣∣X(j)
i X

(l)
i

∣∣∣ |1 (Qi < τ0)− 1 (Qi < τ)| ≤ C5η

}
→ 1(7.58)

P

{
sup

|τ−τ0|<η

∣∣∣∣∣ 1n
n∑
i=1

UiX
′
iδ0 [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ≤ λ
√
η

2

}
→ 1,(7.59)

as n→∞.

Proof of Lemma 10. Recall the matrix Ξn,n, as defined in (7.15), and let ξ
(k)
i represent the ele-

ment in the i-th row and k-th column of this matrix. Additionally, define ξ̃
(q)
i to be the element in

the i-th row and q-th column of the transpose of Ξn,n, denoted as ΞTn,n.
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Sort {Xi, Ui, Qi}ni=1 by (Q1, · · ·Qn) in ascending order, then

P

{
sup

1≤j,l≤p
sup

|τ−τ0|<η

1

n

n∑
i=1

∣∣∣X(j)
i X

(l)
i

∣∣∣ |1 (Qi < τ0)− 1 (Qi < τ)| > C5η

}

=P

 max
1≤j,l≤p

max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

1

n

k∑
i=q

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣ > C5η


then

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣ is independent random variable(not identical) and

max
1≤j,l≤p

max
[n(τ0−η)]≤q≤i≤k≤[n(τ0+η)]

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣ ≤ max
1≤j,l≤p

max
1≤i≤n

∣∣∣X(j)
i X

(l)
i

∣∣∣ ≤ EMXX + C2
2 <∞.

So under Assumption 1, conditions for maximal inequalities are stratified. Lemma E.4 (ii)of Cher-

nozhukov et al. (2017) provides (set η = 1 and s = 2 in their Lemma):

P

 max
1≤j,l≤p

max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

k∑
i=q

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣ ≥ 2E

 max
1≤j,l≤p

max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

k∑
i=q

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣
+ t


≤ C̃

E
[
max1≤j,l≤p max[n(τ0−η)]≤q≤i≤k≤[n(τ0+η)]

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣]
t2

, set t = log p, then we have

≤ C̃ (EMXX + C2
2 )2

(log p)2

(7.60)

Lemma E.3 of Chernozhukov et al. (2017) provides

E

 max
1≤j,l≤p

max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

k∑
i=q

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣


≤C̃ max
1≤j,l≤p

max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

E

 k∑
i=q

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣


+C̃E

[
max

1≤j,l≤p
max

[n(τ0−η)]≤q≤i≤k≤[n(τ0+η)]

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣] log(2nη · p2)

≤C̃(EMXX + C2
2 )[(2nη) + log(2nη · p2)]

(7.61)

Combining (7.61) with (7.60),

P

 max
1≤j,l≤p

max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

1

n

k∑
i=q

∣∣∣X(j)
i X

(l)
i ξ

(k)
i ξ̃

(q)
i

∣∣∣ ≥ 2C̃(EMXX + C2
2 )[(2η) +

log(2nη · p2)

n
] +

log p

n


≤C̃ (EMXX + C2

2 )2

(log p)2
,
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There exist a positive constant C5 such that 2C̃(EMXX +C2
2 )[(2η) + log(2nη·p2)

n ] + log p
n = C5η given

η ≥ C log p
n , then

P

{
sup

1≤j,l≤p
sup

|τ−τ0|<η

1

n

n∑
i=1

∣∣∣X(j)
i X

(l)
i

∣∣∣ |1 (Qi < τ0)− 1 (Qi < τ)| > C5η

}
≤ C̃ (EMXX + C2

2 )2

(log p)2
= op(1).

Hence, we have proved (7.58); (7.59) can be proven using parallelly arguments.

Sort {Xi, Ui, Qi}ni=1 by (Q1, · · ·Qn) in ascending order, then

P

{
sup

|τ−τ0|<η

∣∣∣∣∣ 1n
n∑
i=1

UiX
′
iδ0 [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ≥ λ
√
η

2

}

=P

 max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

∣∣∣∣∣∣ 1n
k∑
i=q

UiX
′
iδ0ξ

(k)
i ξ̃

(l)
i

∣∣∣∣∣∣ ≥ λ
√
η

2


then UiX

′
iδ0ξ

(k)
i ξ̃

(l)
i is independent centered random variable(not identical),

max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

k∑
i=q

V ar[UiX
′
iδ0ξ

(k)
i ξ̃

(l)
i ] ≤ 2nηV ar[UiXiδ0] ≤ 2nη‖δ0‖21EM2

UX

and

max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

|UiX ′iδ0ξ
(k)
i ξ̃

(l)
i | ≤ ‖δ0‖1 max

1≤i≤n
max

1≤j≤p
|UiX(j)

i | < ‖δ0‖1MUX <∞.

So under Assumption 1, conditions for maximal inequalities are stratified. Lemma E.2(ii) of Cher-

nozhukov et al. (2017) provides (set η = 1 and s = 2 in their Lemma):

P

 max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

|
k∑
i=q

UiX
′
iδ0ξ

(k)
i ξ̃

(l)
i | ≥ 2E

 max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

|
k∑
i=q

UiX
′
iδ0ξ

(k)
i ξ̃

(l)
i |

+ t


≤ exp {− t2

3 max[n(τ0−η)]≤q≤k≤[n(τ0+η)] |UiX ′iδ0ξ
(k)
i ξ̃

(l)
i |
}+ C̃

‖δ0‖21EM2
UX

t2
, set t = (nη log p)1/2,then we have

≤ 1

(p)C̃
+ C̃
‖δ0‖21EM2

UX

(nη log p)

(7.62)
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Lemma E.1 of Chernozhukov et al. (2017) provides

E

 max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

|
k∑
i=q

UiX
′
iδ0ξ

(k)
i ξ̃

(l)
i |


≤C̃

√√√√ max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

k∑
i=q

V ar[UiX ′iδ0ξ
(k)
i ξ̃

(l)
i ]
√

log (2nη)2 + C̃‖δ0‖1
√
EM2

UX log (2nη)2

≤C̃‖δ0‖1
√

2nηEM2
UX

√
log (2nη)2 + C̃‖δ0‖1

√
EM2

UX log (2nη)2

=C̃‖δ0‖1
√
EM2

UX [
√

2nη log (2nη)2 + log (2nη)2]

(7.63)

Combining (7.63) with (7.62),

P

 max
[n(τ0−η)]≤q≤k≤[n(τ0+η)]

| 1
n

k∑
i=q

UiX
′
iδ0ξ

(k)
i ξ̃

(l)
i | ≥ 2C̃‖δ0‖1

√
EM2

UX [

√
2η log (2nη)2

√
n

+
log (2nη)2

n
] +

√
η log p√
n


≤ 1

(p)C̃
+ C̃
‖δ0‖21EM2

UX

(nη log p)
.

(7.64)

Set λ by (3.1),there exist a positive constant C such that 2C̃‖δ0‖1
√
EM2

UX [

√
2η log (2nη)2√

n
+ log (2nη)2

n ]+
√
η log p√
n

= C
2µ

√
log p√
n

√
η given η ≥ C log p

n ,

P

{
sup

|τ−τ0|<η

∣∣∣∣∣ 1n
n∑
i=1

UiX
′
iδ0 [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ≥ C

2µ

√
log p√
n

√
η

}

≤ 1

(p)C̃
+ C̃
‖δ0‖21EM2

UX

(nη log p)
= op(1)

Hence, we have proved (7.59).

We now provide a lemma for bounding the prediction loss as well as the l1 estimation loss for

α0.To do so, we define a constant G2, and functions of (λ, cα, cτ , ‖δ0‖1) G1 and G3 accordingly:

G2 =
12
(
C2

2 + µλ
)

κ2
,

G1 =
√
cτ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1cτ ,

G3 =
2
√

2
(
C2

2 + µλ
) 1

2
√
C5C1

κ
(cαcτ )

1/2
.
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Lemma 11. Suppose that |τ̂ − τ0| ≤ cτ and ‖α̂− α0‖1 ≤ cα for some (cτ , cα). Let Assumption 2

and 4 hold with S = {|τ − τ0| ≤ cτ}, κ = κ( 2+µ
1−µ ,S,Σ) for 0 < µ < 1. Then, conditional on A1 ,A2,

A3, A4 and A5 , we have∥∥∥f̂ − f0

∥∥∥2

n
≤ 3λ ·

{
G1 ∨G2λs0 ∨G3

√
s0‖δ0‖1

}
,

‖α̂− α0‖1 ≤
3

(1− µ)
√
C2

3 − µλ
·
{
G1 ∨G2λs0 ∨G3

√
s0‖δ0‖1

}
.

Proof of Lemma 11. Note that

|Rn| =

∣∣∣∣∣2n−1
n∑
i=1

UiX
′
iδ0 {1(Qi < τ̂)− 1(Qi < τ0)}

∣∣∣∣∣ ≤ λ√cτ .(7.65)

by Assumption 4 (3.7). Conditioning on A4, the triangular inequality implies that

∣∣∣∥∥∥D̂α0

∥∥∥
1
− ‖Dα0‖1

∣∣∣ ≤
∣∣∣∣∣∣
p∑
j=1

(∥∥∥X(j) (τ̂)
∥∥∥
n
−
∥∥∥X(j) (τ0)

∥∥∥
n

) ∣∣∣δ(j)
0

∣∣∣
∣∣∣∣∣∣

applying the mean value theorem to
∥∥∥X(j) (τ̂)

∥∥∥
n

≤
p∑
j=1

(
2
∥∥∥X(j) (t0)

∥∥∥
n

)−1
∣∣∣∣∥∥∥X(j) (τ̂)

∥∥∥2

n
−
∥∥∥X(j) (τ0)

∥∥∥2

n

∣∣∣∣ ∣∣∣δ(j)
0

∣∣∣
≤

p∑
j=1

(
2
∥∥∥X(j) (t0)

∥∥∥
n

)−1 ∣∣∣δ(j)
0

∣∣∣ 1

n

n∑
i=1

∣∣∣X(j)
i

∣∣∣2 |1 {Qi < τ̂} − 1 {Qi < τ0}|

≤
(

2
√
C2

3 − µλ
)−1

‖δ0‖1C5cτ .

(7.66)

where the last inequality is due to Assumption 4(3.5). We now consider two cases:

(i)
∥∥∥D̂(α̂− α0)J0

∥∥∥
1
>
√
cτ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1cτ and

(ii)
∥∥∥D̂(α̂− α0)J0

∥∥∥
1
≤ √cτ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1cτ .

Case (i): Combine (7.65) and (7.66)

λ
∣∣∣∥∥∥D̂α0

∥∥∥
1
− ‖Dα0‖1

∣∣∣+Rn < λ

(
2
√
C2

3 − µλ
)−1

‖δ0‖1C5(cτ + λ
√
cτ ) + λ

√
cτ < λ

∥∥∥D̂ (α̂− α0)J0

∥∥∥
1
.

Combine the above results with (7.27), we have∥∥∥f̂ − f0

∥∥∥2

n
+ (1− µ)λ

∥∥∥D̂(α̂− α0)
∥∥∥

1
≤ 3λ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1
,(7.67)
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which implies

(1− µ)
∥∥∥D̂(α̂− α0)

∥∥∥
1
≤ 3

∥∥∥D̂(α̂− α0)J0

∥∥∥
1
.

Then subtract (1− µ)
∥∥∥D̂(α̂− α0)J0

∥∥∥
1

on both sides,

∥∥∥D̂(α̂− α0)Jc0

∥∥∥
1
≤ 2 + µ

1− µ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1
.(7.68)

In this case, we are applying Assumption 2 with adaptive restricted eigenvalue condition κ(s0,
2+µ
1−µ ,S,Σ).

Recall that Xi(τ) = (X ′i, X
′
i1{Qi < τ})′ and X(τ) = (X1(τ)′, · · · ,Xn(τ)′)′.Note the fact that

1

n

n∑
i=1

{
2
(
Xi(τ̂)′α̂−Xi(τ̂)′α0

)(
X ′iδ0

[
1(Qi < τ0)− 1(Qi < τ̂)

])}
=2
(
α̂′X(τ̂)′ − α′0X(τ̂)′

)(
X ′δ0

[
1(Qi < τ0)− 1(Qi < τ̂)

])
=2
(
α̂′Xi(τ̂)′ − α′0Xi(τ̂)′

)(
Xi(τ0)α0 −Xi(τ̂)α0

)
=2α̂′X(τ̂)′X(τ0)α0 − 2α′0X(τ̂)′X(τ0)α0 − 2α̂′X(τ̂)′X(τ̂)α0 + 2α′0X(τ̂)′X(τ̂)α0

=− 2α′0X(τ̂)′X(τ0)α0 + 2α′0X(τ̂)′X(τ̂)α0 + 2α′0X(τ0)′X(τ̂)α̂− 2α′0X(τ̂)′X(τ̂)α̂

since α′0X(τ0)′X(τ0)α0 + α′0X(τ̂)′X(τ̂)α0 ≥ 2α′0X(τ̂)′X(τ0)α0

≥− α′0X(τ0)′X(τ0)α0 − α′0X(τ̂)′X(τ̂)α0 + 2α′0X(τ̂)′X(τ̂)α0 + 2α′0X(τ0)′X(τ̂)α̂− 2α′0X(τ̂)′X(τ̂)α̂

=− α′0X(τ0)′X(τ0)α0 + α′0X(τ̂)′X(τ̂)α0 + 2α′0X(τ0)′X(τ̂)α̂− 2α′0X(τ̂)′X(τ̂)α̂

Since it is assumed that |τ̂−τ0| ≤ cτ , Assumption 2 only needs to hold with S in the cτ neighborhood
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of τ0. As δ0 6= 0, (7.52) now has an extra term

κ2
∥∥∥D̂(α̂− α0)J0

∥∥∥2

2
≤ 2κ̂(

2 + µ

1− µ
,S, Σ̂)2

∥∥∥D̂(α̂− α0)J0

∥∥∥2

2

≤ 2

n

∥∥∥X(τ̂)D̂(α̂− α0)
∥∥∥2

2

=
2

n
(α̂− α0)′D̂X(τ̂)′X(τ̂)D̂(α̂− α0)

≤
2
∥∥∥D̂∥∥∥2

∞
n

(α̂− α0)′X(τ̂)′X(τ̂)(α̂− α0)

≤ 2
∥∥∥f̂ − f0

∥∥∥2

n

∥∥∥D̂∥∥∥2

∞

(∥∥∥f̂ − f0

∥∥∥2

n
− α′0X(τ0)′X(τ0)α0 + α′0X(τ̂)′X(τ̂)α0 + 2α′0X(τ0)′X(τ̂)α̂− 2α′0X(τ̂)′X(τ̂)α̂

)
≤ 2

∥∥∥D̂∥∥∥2

∞

∥∥∥f̂ − f0

∥∥∥2

n
+ 2

∥∥∥D̂∥∥∥2

∞

1

n

n∑
i=1

{
2
(
Xi(τ̂)′α̂−Xi(τ̂)′α0

)(
X ′iδ0

[
1(Qi < τ0)− 1(Qi < τ̂)

])}

≤ 2
∥∥∥D̂∥∥∥2

∞

(∥∥∥f̂ − f0

∥∥∥2

n
+ 2cα ‖δ0‖1 sup

j

1

n

n∑
i=1

∣∣∣X(j)
i

∣∣∣2 |1(Qi < τ0)− 1(Qi < τ̂)|

)

≤ 2
(
C2

2 + µλ
)(∥∥∥f̂ − f0

∥∥∥2

n
+ 2C5‖δ0‖1cαcτ )

)
,

where the last inequality is due to events A1 and Assumption 4(3.5). Combining this result with

(7.67), we have∥∥∥f̂ − f0

∥∥∥2

n
≤ 3λ

∥∥∥D̂ (α̂− α0)J0

∥∥∥
1

≤ 3λ
√
s0

∥∥∥D̂ (α̂− α0)J0

∥∥∥
2

≤ 3λ
√
s0

(
2κ−2

(
C2

2 + µλ
)(∥∥∥f̂ − f0

∥∥∥2

n
+ 2C5‖δ0‖1cαcτ )

))1/2

.

Applying a+ b ≤ 2a ∨ 2b, we get the upper bound of
∥∥∥f̂ − f0

∥∥∥
n

on A1 ,A2, A3, A4, A5 , as

∥∥∥f̂ − f0

∥∥∥2

n
≤

36
(
C2

2 + µλ
)

κ2
λ2s0 ∨

6
√

2
(
C2

2 + µλ
) 1

2
√
C5C1

κ
λ
√
s0‖δ0‖1 (cαcτ )

1/2
.(7.69)

To derive the upper bound for ‖α̂− α0‖1, use (7.68) ,

min(D̂) ‖α̂− α0‖1 ≤
∥∥∥D̂(α̂− α0)

∥∥∥
1
≤ 3

1− µ

∥∥∥D̂ (α̂− α0)J0

∥∥∥
1

≤ 3

1− µ
√
s0

∥∥∥D̂ (α̂− α0)J0

∥∥∥
2

≤ 3

1− µ
√
s0

(
2κ−2

(
C2

2 + µλ
)(∥∥∥f̂ − f0

∥∥∥2

n
+ 2cαcτC5‖δ0‖1

))1/2

=
3
√

2

(1− µ)κ

√
s0

((
C2

2 + µλ
)(∥∥∥f̂ − f0

∥∥∥2

n
+ 2C5‖δ0‖1cαcτ

))1/2

.

48



where the last inequality is due to conditional on A3. Then using the inequality that a+ b ≤ 2a∨ 2b

with (7.55) and (7.69) yields

‖α̂− α0‖1 ≤
36

(1− µ)κ2

(
C2

2 + µλ
)√

C2
3 − µλ

λs0 ∨
6
√

2

(1− µ)κ

√
C2

2 + µλ
√
C5√

C2
3 − µλ

√
s0‖δ0‖1 (cαcτ )

1/2
.

Case (ii): In this case, (7.27) shows

∥∥∥f̂ − f0

∥∥∥2

n
+ (1− µ)λ

∥∥∥D̂(α̂− α0)JC0

∥∥∥
1
≤ 2λ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1
− (1− µ)λ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1

+ λ
∣∣∣∥∥∥D̂α0

∥∥∥
1
− ‖Dα0‖1

∣∣∣+Rn

(7.70)

which implies∥∥∥f̂ − f0

∥∥∥2

n
+ ≤ (1 + µ)λ

∥∥∥D̂(α̂− α0)J0

∥∥∥
1

+ λ
∣∣∣∥∥∥D̂α0

∥∥∥
1
− ‖Dα0‖1

∣∣∣+Rn.(7.71)

∥∥∥f̂ − f0

∥∥∥2

n
≤ 3λ

(
√
cτ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1cτ

)
,

‖α̂− α0‖1 ≤
3

(1− µ)
√
C2

3 − µλ

(
√
cτ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1cτ

)
,

which provides the result.

The following lemma shows that the bound for |τ̂ − τ0| can be further tightened if we combine

results obtained in Lemmas 9 and 11.

Lemma 12. Suppose that |τ̂ − τ0| ≤ cτ and ‖α̂− α0‖1 ≤ cα for some (cτ , cα).Let η̃ = C−1
4 λ

(
(1 + µ)

√
C2

2 + µλcα +G1

)
.

If Assumption 3 holds, then conditional on the events A1, A2, A3, A4 , we have,

|τ̂ − τ0| ≤ η̃.

Proof of Lemma 12. Note that on A1, A2, A3 A4 and Assumption 4(3.7),∣∣∣∣∣ 2n
n∑
i=1

[
UiX

′
i

(
β̂ − β0

)
+ UiX

′
i1 (Qi < τ̂)

(
δ̂ − δ0

)]∣∣∣∣∣
≤ µλ

(√
C2

2 + µλ

)
‖α̂− α0‖1 ≤ µλ

(√
C2

2 + µλ

)
cα

and ∣∣∣∣∣ 2n
n∑
i=1

UiX
′
iδ0 [1 (Qi < τ̂)− 1 (Qi < τ0)]

∣∣∣∣∣ ≤ λ√cτ .
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Suppose η̃ < |τ̂ − τ0| ≤ cτ . As in (7.56),

Ŝn − Sn(α0, τ0) ≥
∥∥∥f̂ − f0

∥∥∥2

n
− µλ

(√
C2

2 + µλcα

)
− λ
√
cτ .

Furthermore, we obtain[
Ŝn + λ

∥∥∥D̂α̂∥∥∥
1

]
− [Sn(α0, τ0) + λ ‖Dα0‖1]

using triangle inequality on
∥∥∥D̂α̂∥∥∥

1
− ‖Dα0‖1

≥
∥∥∥f̂ − f0

∥∥∥2

n
− µλ

(√
C2

2 + µλcα

)
− 2‖δ0‖1λ

√
cτ − λ

(∥∥∥D̂(α̂− α0)
∥∥∥

1
+
∥∥∥(D̂−D)α0

∥∥∥
1

)
>C4η̃ −

(
(1 + µ)

(√
C2

2 + µλcα

)
+G1

)
λ,

where the last inequality is due to Assumption 3, Hölder’s inequality and (7.66).

Since C4η̃ =
(

(1 + µ)
√
C2

2 + µλcα +G1

)
λ by definitation, similarly as in the proof of Lemma

9, proof by contradiction yields the result.

Lemma 11 provides us with three different bounds for ‖α− α0‖1 and the two terms G1 amd G3

are functions of cτ and cα. If we can show that the bound for |τ̂ − τ0| and |α̂− α0| in 11 and 12 are

further tightened, it is useful to apply Lemmas 11 and 12 iteratively. to tighten up the bounds i

Lemma 9 results in that we can start the iteration with c
(0)
τ =

2C1(3+µ)(C2
2+µλ)

1
2

C4
s0λ. (3.2) in

Lemma 1 allow us to choose c
(0)
α =

(
2C1(3+µ)

)
(C2

2+µλ)
1
2

(1−µ)(C2
3−µλ)

1
2

s0.

Lemma 13. Suppose that Assumption1 to 4 hold with S = {|τ − τ0| ≤ η∗}, κ = κ(s0,
2+µ
1−µ ,S,Σ)

for 0 < µ < 1. Let (α̂, τ̂) be the LASSO estimator defined by (2.4) with λ given by (3.1). In

addition, there exists a sequence of constants η1, ..., ηm∗ for some finite m∗. With probability at

least 1 −
(

1

pC̃1
+ C̃2

EM2
X2

n log p

)
−
(

1

pC̃3
+ C̃4

EM2
Xt0

n log p

)
−
(

1

pC̃5
+ C̃6

EM2
UX

n log p

)
−
(

1

(pn)C̃7
+ C̃8

EM2
UX

(n log pn)

)
−(

1

(p2)C̃9
+ C̃10

EM2
XX

(n log p2)

)
−
(

1

(p2n)C̃11
+ C̃12

EM2
XX

(n log p2n)

)
we have

∥∥∥f̂ − f0

∥∥∥2

n
≤ 3G2λ

2s0,

‖α̂− α0‖1 ≤
3

(1− µ)
√
C2

3 − µλ
G2λs0,

|τ̂ − τ0| ≤

(
3 (1 + µ)

√
(C2

2 + µλ)

(1− µ)
√

(C2
3 − µλ)

+ 1

)
1

C4
G2λ

2s0.

Proof of Lemma 13. The iteration to implement is as follows:

Step 1: Starting values c
(0)
τ =

2C1(3+µ)(C2
2+µλ)

1
2

C4
s0λ and c

(0)
α =

(
2C1(3+µ)

)
(C2

2+µλ)
1
2

(1−µ)(C2
3−µλ)

1
2

s0.
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Step 2:When m ≥ 1,

G
(m−1)
1 =

√
c
(m−1)
τ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1c(m−1)
τ ,

G
(m−1)
3 =

2
√

2
(
C2

2 + µλ
) 1

2
√
C5C1

κ

√
c
(m−1)
α c

(m−1)
τ ,

c(m)
α =

3

(1− µ)
√
C2

3 − µλ
·
{
G

(m−1)
1 ∨G2λs0 ∨G(m−1)

3

√
s0‖δ0‖1

}
,

c(m)
τ =

λ

C4

(
(1 + µ)

√
C2

2 + µλc(m)
α +G

(m−1)
1

)
.

Step 3: We stop the iteration if{
G

(m)
1 ∨G2λs0 ∨G(m)

3

√
s0‖δ0‖1

}
doesn’t change.

Suppose step 3 met under
{
G

(m)
1 ∨G2λs0 ∨G(m)

3

√
s0‖δ0‖1

}
= G2λs0, then the bound in the

lemma is reached within m∗, a finite number, of iterative applications.

Since G
(m−1)
1 and G2λs0 are positive,

G
(m−1)
1

G2λs0
> 0. Note that c

(m)
α ≥ 3

(1−µ)
√
C2

3−µλ
G2λs0, we have

c(m)
τ =

λ

C4

(
(1 + µ)

√
C2

2 + µλc(m)
α +G

(m−1)
1

)
≥ λ

C4

(
3 (1 + µ)

√
C2

2 + µλ

(1− µ)
√
C2

3 − µλ
G2λs0 +G

(m−1)
1

)

≥ 1

C4

(
3 (1 + µ)

√
C2

2 + µλ

(1− µ)
√
C2

3 − µλ
+
G

(m−1)
1

G2λs0

)
G2λ

2s0

>
1

C4

(
3 (1 + µ)

√
C2

2 + µλ

(1− µ)
√
C2

3 − µλ

)
G2λ

2s0

(7.72)

Note that (7.72) shows that c
(m)
τ ≥ Cs0

log p
2n are valid for all each application of Lemma 9 to Lemma

12. Then c
(m∗+1)
α is the bound given in the statement of the lemma for ‖α̂− α0‖1 . Next,

c(m
∗+1)

τ =
λ

C4

(
(1 + µ)

√
C2

2 + µλc(m
∗+1)

α +G
(m∗)
1

)
≤ λ

C4

(
3 (1 + µ)

√
C2

2 + µλ

(1− µ)
√
C2

3 − µλ
G2λs0 +G2λs0

)

=

(
3 (1 + µ)

√
(C2

2 + µλ)

(1− µ)
√

(C2
3 − µλ)

+ 1

)
G2

C4
λ2s0,

which is the bound given in the statement of the lemma for |τ̂ − τ0|.
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Next, we turn to proof-of-existence for m∗. First, by induction we can show that G
(m−1)
1 , G

(m−1)
1 ,

c
(m)
α and c

(m)
τ are decreasing as m increases. We start the iteration with setting of c

(0)
τ and c

(0)
α in step

1. By step 2, as long as n,p, s0 and ‖δ0‖1 are large enough, we obtain (in the following derivation,

C̃ are different constant in each term,but all positive and finite)

G
(0)
1 =

√
c
(0)
τ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1c(0)
τ = C̃

√
s0λ+ C̃‖δ0‖1s0λ,

G
(0)
3 =

2
√

2
(
C2

2 + µλ
) 1

2
√
C5C1

κ

√
c
(0)
α

√
c
(0)
τ = C̃

√
s2

0λ,

Then
{
G

(0)
1 ∨G2λs0 ∨G(0)

3

√
s0‖δ0‖1

}
= G

(0)
3

√
s0‖δ0‖1,

follows from ‖δ0‖1s0λ = op(1).

c(1)
α =

3

(1− µ)
√
C2

3 − µλ
·
{
G

(0)
1 ∨G2λs0 ∨G(0)

3

√
s0‖δ0‖1

}
= C̃s0

√
s0‖δ0‖1λ,

c(1)
τ =

λ

C4

(
(1 + µ)

√
C2

2 + µλc(1)
α +G

(0)
1

)
= C̃s0λ

√
s0‖δ0‖1λ+ C̃λ

√
s0λ+ C̃‖δ0‖1s0λ

2.

Thus we have

c(0)
α > c(1)

α and c(0)
τ > c(1)

τ .

We assume

c(m)
α > c(m+1)

α and c(m)
τ > c(m+1)

τ ,

it is easy to show

G
(m)
1 > G

(m+1)
1 and G

(m)
3 > G

(m+1)
3

then

c(m+1)
α > c(m+2)

α and c(m+1)
τ > c(m+2)

τ .

This means that applying the iteration can tighten up the bounds.

We use proof by contradiction to be shown that there exist m∗ such that{
G

(m∗)
1 ∨G2λs0 ∨G(m∗)

3

√
s0‖δ0‖1

}
= G2λs0.

Suppose for all m > 1, {
G

(m)
1 ∨G(m)

3

√
s0‖δ0‖1

}
> G2λs0.

As G
(m−1)
1 , G

(m−1)
3 are decreasing as m increases, and

{
G

(m)
1 ∨G(m)

3

√
s0‖δ0‖1

}
is bounded, there

are two cases to consider:

Case (1):

G
(m)
1 ≤ G(m)

3

√
s0‖δ0‖1

for m sufficiently large. Let G
(m)
3 converge to G

(∞)
3 and G

(∞)
3 > G2λs0.
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c(∞)
α =

3

(1− µ)
√
C2

3 − µλ
G3

√
s0‖δ0‖1 =: H1

√
s0‖δ0‖1

√
c
(∞)
α

√
c
(∞)
τ , where H1 is defined accordingly as

H1 =
6
√

2
(
C2

2 + µλ
) 1

2
√
C5C1

(1− µ)
√
C2

3 − µλκ
.

c∞α =H2
1s0‖δ0‖1c∞τ ,

c∞τ =C−1
4 λ

(
(1 + µ)

√
(C2

2 + µλ)c∞α +
√
c∞τ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1c∞τ

)

=C−1
4 (1 + µ)

√
(C2

2 + µλ)λc∞α + C−1
4 λ

√
c∞τ + C−1

4

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1λc∞τ

= : H2λc
∞
α +H3λ

√
c∞τ +H4‖δ0‖1λc∞τ ,

by defining

H2 = : C−1
4 (1 + µ)

√
(C2

2 + µλ),

H3 = : C−1
4 ,

H4 = : C−1
4

(
2
√
C2

3 − µλ
)−1

C5.

To solve the above equation system, as n, p are sufficiently large,
√
C2

3 − µλ and
√
C2

2 + µλ converge

to constants; s0‖δ‖1λ and ‖δ0‖1λ converge to 0,

c∞τ =

(
H2

1H2s0‖δ‖1λ2 +H3λ

1−H2
1H2s0‖δ‖1λ−H4λ‖δ‖1

)2

= Op(λ
2),

c(∞)
α =H2

1s0‖δ0‖1c∞τ = Op(s0‖δ0‖1λ2).

Then,

G
(∞)
3

√
s0‖δ0‖1 =

(1− µ)
√
C2

3 − µλ
3

c(∞)
α = Op(s0‖δ0‖1λ2),

Obviously, the above leads to contradiction, because c∞τ < s0λ
2 and G

(∞)
3

√
s0‖δ0‖1 < G2λs0.

Case (2):

G
(m)
1 > G

(m)
3

√
s0‖δ0‖1

for m sufficiently large. Let G
(m)
1 converge to G

(∞)
1 and G

(∞)
1 > G2λs0.
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Thus, we have that

c(∞)
α = G1

3

(1− µ)
√
C2

3 − µλ
,

c(∞)
τ = C−1

4 λ

(
(1 + µ)

√
(C2

2 + µλ)c(∞)
α +G

(∞)
1

)
= C−1

4 λ

(
(1 + µ)

√
(C2

2 + µλ)
3

(1− µ)
√
C2

3 − µλ
+ 1

)
G

(∞)
1

= C−1
4

(
3 (1 + µ)

√
(C2

2 + µλ)

(1− µ)
√
C2

3 − µλ
+ 1

)
λ

√
c
(∞)
τ + C−1

4

(
3 (1 + µ)

√
(C2

2 + µλ)

(1− µ)
√
C2

3 − µλ
+ 1

)(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1λc(∞)
τ

=: H5λ

√
c
(∞)
τ +H6‖δ0‖1λc(∞)

τ ,

where H5 and H6 are defined accordingly. Furthermore, as n, p are sufficiently large,
√
C2

3 − µλ
and

√
C2

2 + µλ converge to constants , ‖δ0‖1λ converges to 0,

c∞τ =

(
H5λ

1−H6‖δ0‖1λ

)2

= Op(λ
2).

Then

G
(∞)
1 =

(
1 +

(
2
√
C2

3 − µλ
)−1

λ‖δ0‖1C5

)√
c
(∞)
τ +

(
2
√
C2

3 − µλ
)−1

C5‖δ0‖1c(∞)
τ = Op(λ+ λ2),

which leads to contradiction, because c∞τ < s0λ
2 and G

(∞)
1 < G2λs0.

Finally, Lemma 11 yields ∥∥∥f̂ − f0

∥∥∥2

n
≤ 3G2λ

2s0.

Proof of Theorem 2. The proof follows immediately from combining Assumption 1 to 4 with Lemma

13. In particular,

P{A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5} ≥ 1−
(

1

pC̃1

+ C̃2
EM2

X2

n log p

)
−
(

1

pC̃3

+ C̃4

EM2
Xt0

n log p

)
−
(

1

pC̃5

+ C̃6
EM2

UX

nlog p

)
−
(

1

(pn)C̃7

+ C̃8
EM2

UX

n log(pn)

)
−
(

1

p2C̃9

+ C̃10
EM2

XX

n log p2

)
−
(

1

(p2n)C̃11

+ C̃12
EM2

XX

n log(p2n)

)
.
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7.5 Proof of Asymptotic Properties of Nodewise Regression Estimator

The proof is similar to Lemma A.9 in the Appendix of Caner and Kock (2018). We adapt their

proof to our purpose.

Define

Anode = { max
j+p∈H

sup
τ∈T
‖X(−j)(τ)′υ(j)/n‖∞ ≤

µλnode
2
},

A(j)
EV = {κ(sj , c0,T, M̂−j,−j)2

2
≤ κ̂(sj , c0,T,M−j,−j)2}.

Bnode = { max
j∈Horj+p∈H

sup
τ∈T
‖X̃(−j)(τ)′υ̃(j)/n‖∞ ≤

µλnode
2
},

B(j)
EV = {κ(sj , c0,T, N̂−j,−j)2

2
≤ κ̂(sj , c0,T, N−j,−j)2}.

The above four series of events are uniformly on τ ∈ T.

Lemma 14. Let Assumptions 1-5 be satisfied and set λnode = C
µ

√
log p
n . Suppose that δ̂(τ̂) 6= 0

estimated via (2.4). Then

P
{
Anode ∩j+p∈H A(j)

EV ∩ Bnode ∩j∈Horj+p∈H B(j)
EV

}
≥ 1− op(1).

Proof of Lemma 14. To prove probability of event ACnode, we adapt the the proof of Lemma 4 to our

purpose,

P
{
ACnode

}
= P

{
max
j+p∈H

sup
τ∈T
‖X(−j)(τ)′υ(j)/n‖∞ ≤

µλnode
2

}
=P

{
max
j+p∈H

max
1≤l≤p−1

sup
τ∈T

1

n

n∑
i=1

X
(−j,l)
i (τ)υ

(j)
i ≤

µλnode
2

}

Sort {Xi, Ui, Qi}ni=1 by (Q1, · · ·Qn) in ascending order, then

P

{
max
j+p∈H

sup
τ∈T

max
1≤l≤p−1

1

n

n∑
i=1

X
(−j,l)
i (τ)υ

(j)
i ≤

µλnode
2

}

=P

{
max
j+p∈H

max
1≤k≤n

max
1≤l≤p−1

1

n

k∑
i=1

X
(−j,l)
i υ

(j)
i ≤

µλnode
2

}
.

As there are 3 layers k, j, l across max1≤k≤n maxj+p∈H max1≤l≤p−1

∑k
i=1X

(−j,l)
i υ

(j)
i , combine (7.16)
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with (7.17) with setting t =
√
n log((p− 1)hn),

P{ max
j+p∈H

max
1≤k≤n

max
1≤l≤p−1

1

n

k∑
i=1

X
(−j,l)
i υ

(j)
i ≥

2C̃[

√
n log((p− 1)hn)

n
+

√
EM2

Xυ log((p− 1)hn)

n
] +

√
n log((p− 1)hn)

n
}

≤ 1

[(p− 1)hn]C̃
+ C̃

EM2
Xυ

n log((p− 1)hn)
= op(1).

We see that

2C̃[

√
n log((p− 1)hn)

n
+

√
EM2

Xυ log((p− 1)hn)

n
] +

√
n log((p− 1)hn)

n

≤(2C̃ + 1)

√
n log p3

n
+ 2C̃

√
EM2

Xυ log p3

n

≤
√

log p

n
((2C̃ + 1)

√
3 + 6C̃

√
EM2

Xυ log p

n
)

provided that we can find some constant C̃ > 0.

Therefore if we choose µλnode
2 =

√
log p
n ((2C̃ + 1)

√
3 + 6C̃

√
EM2

Xυ log p

n ), the same rate as (3.1),

P
{
ACnode

}
≤ 1

[(p− 1)hn]C̃
+ C̃

EM2
Xυ

n log((p− 1)hn)
= op(1)

Using analogous arguments to that discussed above with regard to the transpose of Ξn,n in (7.15)

and ξ̃i(l) as the element in the i-th row and l-th column of the transpose of Ξn, n, we can conclude

the following inequality:

P
{
BCnode

}
≤ 1

[(p− 1)hn]C̃
+ C̃

EM2
Xυ

n log((p− 1)hn)
= op(1)

Next, we bound the probability of event (∩j+p∈HA(j)
EV )C and (∩j∈Horj+p∈HB(j)

EV )C . Note the fact

that for each j + p ∈ H

(1 + c0)2sj sup
τ∈T
‖M̂−j,−j(τ)−M−j,−j(τ)‖∞ ≤ (1 + c0)2s̄ sup

τ∈T
‖M̂(τ)−M(τ)‖∞ ≤

κ(s̄, c0,T,M)

2
≤ κ(sj , c0,T,M)

2

implies that {
(1 + c0)2sj sup

τ∈T
‖M̂−j,−j(τ)−M−j,−j(τ)‖∞ ≤

κ(sj , c0,T,M)

2

}
⊂ A(j)

EV .

Thus, {
(1 + c0)2s̄ sup

τ∈T
‖M̂(τ)−M(τ)‖∞ ≤

κ(s̄, c0,T,M)

2

}
⊂ ∩j+p∈HA(j)

EV .
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Then by arguments exactly parallel to those in Lemma 7, we can show,

P
{

(∩j+p∈HA(j)
EV )C

}
≤ op(1)

provided that κ(sj , c0,T,M) > 0. Similarly, we can show

P
{

(∩j∈Horj+p∈HB(j)
EV )C

}
≤ op(1)

Therefore

P
{
Anode ∩j+p∈H A(j)

EV ∩ Bnode ∩j∈Horj+p∈H B(j)
EV

}
≥ 1− op(1).

Proof of Lemma 2. Given ∀τ ∈ T and each j ∈ Horj + p ∈ H, (4.12) is a loss function for linear

model, the pointwise oracle inequalities from Theorem 2.4 in van de Geer et al. (2014) for linear

model have been proved.

As the uniform oracle inequalities only involve noise conditions Anode and Bnode, and adaptive

restricted eigenvalue conditions ∩j+p∈HA(j)
EV and ∩j∈Horj+p∈HB(j)

EV . Therefore, by Lemma 14, we

obtain the following results uniformly in T and H,

sup
τ∈T

max
j+p∈H

‖X(−j)(τ)′γj(τ)−X(−j)(τ)′γ̂j(τ)‖n ≤
C

κ̂(s̄, c0,T,Σ)

√
s̄λnode(7.73)

sup
τ∈T

max
j+p∈H

‖γj(τ)− γ̂j(τ)‖1 ≤
C

κ̂(s̄, c0,T,Σ)
2 s̄λnode(7.74)

with probability

P
{
Anode ∩j+p∈H A(j)

EV ∩ Bnode ∩j∈Horj+p∈H B(j)
EV

}
≥ 1− o(1)

In line with the inequalities presented in Lemma A.9 in the Appendix of Caner and Kock (2018),
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we can establish the following set of inequalities:

max
j+p∈H

sup
τ∈T
‖Âj(τ)−Aj(τ)‖1 = Op

(
s̄

√
log p

n

)
(7.75)

max
j+p∈H

sup
τ∈T
‖Âj(τ)−Aj(τ)‖2 = Op

(√
s̄ log p

n

)
(7.76)

max
j+p∈H

sup
τ∈T
‖Âj(τ)‖1 = Op

(√
s̄
)

(7.77)

max
j+p∈H

sup
τ∈T

1

ẑj(τ)2
= Op (1)(7.78)

max
j∈Horj+p∈H

sup
τ∈T
‖B̂j(τ)−Bj(τ)‖1 = Op

(
s̄

√
log p

n

)
(7.79)

max
j∈Horj+p∈H

sup
τ∈T
‖B̂j(τ)−Bj(τ)‖2 = Op

(√
s̄ log p

n

)
(7.80)

max
j∈Horj+p∈H

sup
τ∈T
‖B̂j(τ)‖1 = Op

(√
s̄
)

(7.81)

max
j∈Horj+p∈H

sup
τ∈T

1̂̃zj(τ)2
= Op (1)(7.82)

We now turn to (3.4) and (4.22),

max
j∈H

sup
τ∈T
‖Θ̂(τ)j−Θ(τ)j‖1 ≤ max

j∈Horj+p∈H
sup
τ∈T

max{2‖B̂j(τ)−Bj(τ)‖1, ‖B̂j(τ)−Bj(τ)‖1+‖Âj(τ)−Aj(τ)‖1},

max
j∈H

sup
τ∈T
‖Θ̂(τ)j−Θ(τ)j‖2 ≤ max

j∈Horj+p∈H
sup
τ∈T

max{2‖B̂j(τ)−Bj(τ)‖2, ‖B̂j(τ)−Bj(τ)‖2+‖Âj(τ)−Aj(τ)‖2},

max
j∈H

sup
τ∈T
‖Θ̂(τ)j‖1 ≤ max

j∈Horj+p∈H
sup
τ∈T

max{2‖B̂j(τ)‖1, ‖B̂j(τ)‖1 + ‖Âj(τ)‖1}.

Combine the two cases, we have proved the first 3 inequalities in Lemma 2.

We now consider maxj∈H supτ∈T ‖Θ̂(τ)′jΣ̂(τ)− e′j‖∞.

max
j∈H∩j≤p

sup
τ∈T
‖Θ̂(τ)′jΣ̂(τ)− e′j‖∞ = max

j∈H∩j≤p
sup
τ∈T
‖
[
B̂(τ)j − B̂(τ)j

] [ M̂ M̂(τ)

M̂(τ) M̂(τ)

]
− e′j‖∞

= max
j∈H∩j≤p

sup
τ∈T
‖
[
B̂(τ)jN̂(τ) 0

]
− e′j‖∞ ≤ max

j∈H∩j≤p
sup
τ∈T
‖B̂(τ)′jN̂(τ)− ẽ′j‖∞ ≤ max

j∈H∩j≤p
sup
τ∈T

λnodễzj(τ)2
.

max
j+p∈H

sup
τ∈T
‖Θ̂(τ)′jΣ̂(τ)− e′j‖∞ = max

j+p∈H
sup
τ∈T
‖
[
−B̂(τ)j B̂(τ)j + Â(τ)j

] [ M̂ M̂(τ)

M̂(τ) M̂(τ)

]
− e′j‖∞
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= max
j+p∈H

sup
τ∈T
‖
[
Â(τ)jM̂(τ)− B̂(τ)jN̂(τ) Â(τ)jM̂(τ)

]
−
[
0 ẽ′j

]
‖∞

≤ max
j+p∈H

sup
τ∈T

max{‖Â(τ)′jM̂(τ)−ẽ′j‖∞+‖B̂(τ)′jN̂(τ)−ẽ′j‖∞, ‖Â(τ)′jM̂(τ)−ẽ′j‖∞} ≤ max
j+p∈H

sup
τ∈T

λnode
ẑj(τ)2

+
λnodễzj(τ)2

.

7.6 Proofs for Theorem 3 for Case I. No Threshold.

This subsection explores the case where there is no threshold effect, i.e.the true model is linear.

To show that the ratio

(7.83) t =

√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

is asymptotically standard normal. First, by rewriting (4.8),

t = t1 + t2,

where

t1 =
g′Θ̂(τ̂)X′(τ̂)U/n1/2√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

and

t2 =
g′∆(τ̂)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

It suffices to show that t1 is asymptotically standard normal and t2 = op(1).

Lemma 15. Suppose that Assumption1,2,5 and 6 be satisfied, conditional on events A1 ,A2, A3,

A4, A5, g
′∆(τ̂) = Op(

s0
√
h log p√
n

).
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Proof. By holder’s inequality, Theorem 1, and Lemma 2

g′∆(τ̂) ≤ max
j∈H
|∆j(τ̂)|

∑
j∈H
|gj |

= max
j∈H
|
(

Θ̂j(τ̂)Σ̂(τ̂)− ẽ′j
)√

n(α̂(τ̂)− α0)|
∑
j∈H
|gj |

≤ max
j∈H
|
(

Θ̂j(τ̂)Σ̂(τ̂)− ẽ′j
)√

n(α̂(τ̂)− α0)|
∑
j∈H
|gj |

≤ max
1≤j≤2p

‖Θ̂j(τ̂)Σ̂(τ̂)− ẽ′j‖∞
√
n‖α̂(τ̂)− α0‖1

∑
j∈H
|gj |

≤ C

(
λnode

ẑ1
2(τ̂)j

+
λnode

ẑ2
2(τ̂)j

)
·
√
n · λs0

√
h

= Op(
s0

√
h log p√
n

)

Lemma 16. Suppose that Assumption1 to 6 be satisfied, then

max
1≤k,l,j≤p

| 1
n

n∑
i=1

(X
(k)
i X

(l)
i X

(j)
i )2 − E

[
(X

(k)
i X

(l)
i X

(j)
i )2

]
| = Op

(√
log p√
n

)

max
1≤k,l≤p

| 1
n

n∑
i=1

(X
(k)
i X

(l)
i Ui)

2 − E
[
(X

(k)
i X

(l)
i Ui)

2
]
| = Op

(√
log p√
n

)

max
1≤l,k≤2p

sup
τ∈T
| 1
n

n∑
i=1

X
(k)
i (τ)X

(l)
i (τ)U2

i − E
[
X

(k)
i (τ)X

(l)
i (τ)U2

i

]
| = Op

(√
log p√
n

)
Proof. Apply Lemma E.1 and E.2 of Chernozhukov et al. (2017) under Assumption 6 (ii) and (v),

by arguments exactly parallel to those in proof of Lemma 6, and its proof therefore omitted.

Lemma 17. Suppose that Assumption1 to 6 be satisfied, conditional on events A1 ,A2, A3, A4 and

A5, then

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g| = Op

(
hs̄
√
s3

0

√
log p

n

)
.
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Proof of Lemma 17.

Recall for no-threshold case Σ(τ̂)xu =E
[
Xi(τ̂)X′i(τ̂)U2

i

]
= E [Xi(τ̂)X′i(τ̂)]E

[
U2
i

]
,

Ûi(τ̂) =Yi −X′i(τ̂)α̂(τ̂) = Ui + X′i(τ̂)α0 −X′i(τ̂)α̂(τ̂),

Σ̂(τ̂)xu =
1

n

n∑
i=1

Xi(τ̂)X′i(τ̂)Û(τ̂)2
i ,

and set Σ̃(τ̂)xu =
1

n

n∑
i=1

Xi(τ̂)X′i(τ̂)U2
i

We first show that

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

= |g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g + g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ̃(τ̂)xuΘ(τ̂)′g

+g′Θ(τ̂)Σ̃(τ̂)xuΘ(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

≤ |g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g|+ |g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ̃(τ̂)xuΘ(τ̂)′g|

+|g′Θ(τ̂)Σ̃(τ̂)xuΘ(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

To prove this lemma,we need prove the followings

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g| = op(1)

|g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g| = op(1)

|g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g| = op(1)

Step 1.

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g|

≤ |g′Θ̂(τ̂)
(

Σ̂(τ̂)xu − Σ̃(τ̂)xu

)
Θ̂(τ̂)′g|

≤ ‖g′Θ̂(τ̂)‖21‖Σ̂(τ̂)xu − Σ̃(τ̂)xu‖∞
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Σ̂(τ̂)xu − Σ̃(τ̂)xu

=
1

n

n∑
i=1

(
Xi(τ̂)X′i(τ̂)Û2

i (τ̂)−Xi(τ̂)X′i(τ̂)U2
i

)
=

1

n

n∑
i=1

(
Xi(τ̂)X′i(τ̂)(Ui + X′i(τ̂)α0 −X′i(τ̂)α̂(τ̂))2 −Xi(τ̂)X′i(τ̂)U2

i

)
=

1

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α′0Xi(τ̂)X′i(τ̂)α0)

+
1

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α̂′(τ̂)Xi(τ̂)X′i(τ̂)α̂(τ̂))

− 2

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α′0Xi(τ̂)X′i(τ̂)α̂(τ̂))

+
2

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α′0Xi(τ̂)Ui)

− 2

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α̂(τ̂)′Xi(τ̂)Ui)

=
1

n

n∑
i=1

Xi(τ̂)X′i(τ̂)α0Xi(τ̂)X′i(τ̂) (α0 − α̂(τ̂))

+
1

n

n∑
i=1

Xi(τ̂)X′i(τ̂) (α̂′(τ̂)− α′0) Xi(τ̂)X′i(τ̂)α̂(τ̂)

+
2

n

n∑
i=1

Xi(τ̂)X′i(τ̂) (α′0 − α̂(τ̂)′) Xi(τ̂)Ui

Recall Lemma 16,

max
1≤k,l,j≤p

| 1
n

n∑
i=1

(X
(k)
i X

(l)
i X

(j)
i )2 − E

[
(X

(k)
i X

(l)
i X

(j)
i )2

]
| = Op

(√
log p√
n

)

max
1≤k,l≤p

| 1
n

n∑
i=1

(X
(k)
i X

(l)
i Ui)

2 − E
[
(X

(k)
i X

(l)
i Ui)

2
]
| = Op

(√
log p√
n

)
Applying Theorem 1,

‖α̂(τ̂)‖1 ≤ ‖α0‖1 +Op

(
s0

√
log p

n

)

‖X(τ̂)α̂(τ̂)−X(τ̂)α0‖n = Op

(
√
s0

√
log p

n

)
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‖α0‖1 = Op(s0)

By Cauchy-Schwarz inequality and holder’s inequality

max1≤k,l≤2p | 1n
∑n
i=1

(
X

(k)
i (τ̂)X

(l)
i (τ̂)α′0Xi(τ̂) (X′i(τ̂)α0 −X′i(τ̂)α̂(τ̂)

)
|

≤
√

max1≤k,l≤2p max1≤i≤n
1
n

∑n
i=1(X

(k)
i (τ̂)X

(l)
i (τ̂))2 (X′i(τ̂)α0)

2‖X′(τ̂)α0 −X(τ̂)α̂(τ̂)‖n

≤
√

max1≤k,l≤2p max1≤i≤n
1
n

∑n
i=1(X

(k)
i (τ̂)X

(l)
i (τ̂))2

(
max1≤k≤2p X

(k)
i (τ0)

)2

‖α0‖21‖X(τ0)α0 −X(τ̂)α̂(τ̂)‖n

≤
√

max1≤k,l,j≤p
1
n

∑n
i=1(X

(k)
i X

(l)
i X

(j)
i )2‖α0‖21 · 1 (Qi < τ̂)‖X(τ̂)α̂(τ̂)−X(τ̂)α0‖n

≤ Op

(√
s3

0

√
log p
n

)

max1≤k,l≤2p | 1n
∑n
i=1 (Xi(τ̂)X′i(τ̂) (α̂′(τ̂)− α′0) Xi(τ̂)X′i(τ̂)α̂(τ̂))

≤ max1≤k,l≤2p max1≤i≤n

√
1
n

∑n
i=1(X

(k)
i (τ̂)X

(l)
i (τ̂))2 (α̂′(τ̂)Xi(τ̂))

2‖X(τ̂)α̂(τ̂)−X(τ̂)α0‖n

≤
√

max1≤k,l,j≤p
1
n

∑n
i=1(X

(k)
i X

(l)
i X

(j)
i )2‖α̂(τ̂)‖21|1 (Qi < τ̂)‖X(τ̂)α̂(τ̂)−X(τ̂)α0‖n

≤ Op

(√
s3

0

√
log p
n

)

max1≤k,l≤2p | 2n
∑n
i=1 (X′i(τ̂)α0 −X′i(τ̂)α̂(τ̂)) (X

(k)
i (τ̂)X

(l)
i (τ̂))Ui|

≤ 2

√
max1≤k,l≤p

1
n

∑n
i=1(X

(k)
i X

(l)
i Ui)2 · 1 (Qi < τ̂)‖X(τ̂)α̂(τ̂)−X(τ̂)α0‖n

≤ Op

(
√
s0

√
log p
n

)
Hence,

‖Σ̂(τ̂)xu − Σ̃(τ̂)xu‖∞ = Op

(√
s3

0

√
log p

n

)

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g|

≤ ‖g′Θ̂(τ̂)‖21‖Σ̂(τ̂)xu − Σ̃(τ̂)xu‖∞

≤
(∑

j∈H |gj |maxj∈H supτ∈T ‖Θ̂(τ̂)‖1
)2

‖Σ̂(τ̂)xu − Σ̃(τ̂)xu‖∞

= Op (hs̄)Op

(√
s3

0

√
log p
n

)
= Op

(
hs̄
√
s3

0

√
log p
n

)
Step 2.Next, we show that

|g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g| = op(1)
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Note that

Σ̃(τ̂)xu − Σ(τ̂)xu

= 1
n

∑n
i=1 Xi(τ̂)X′i(τ̂)U2

i − E
[
Xi(τ̂)X′i(τ̂)U2

i

]

Recall Lemma 16,

max
1≤l,k≤2p

| 1
n

n∑
i=1

X
(k)
i (τ̂)X

(l)
i (τ̂)U2

i − E
[
X

(k)
i (τ̂)X

(l)
i (τ̂)U2

i

]
| = Op

(√
log p√
n

)

Therefore

|g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g|

≤ |g′Θ̂(τ̂)
(

Σ̃(τ̂)xu − Σ(τ̂)xu

)
Θ̂(τ̂)′g|

≤ ‖g′Θ̂(τ̂)‖21‖Σ̃(τ̂)xu − Σ(τ̂)xu‖∞

≤
(∑

j∈H |gj |maxj∈H supτ∈T ‖Θ̂j(τ̂)‖1
)2

‖Σ̃(τ̂)xu − Σ(τ̂)xu‖∞

≤ Op (hs̄)Op

(√
log p
n

)
= Op

(
hs̄
√

log p
n

)
Step 3.Next, we show that

|g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g| = op(1)

By Lemma 6.1 in van de Geer et al. (2014)

|g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

≤ ‖Σ(τ̂)xu‖∞‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖21 + 2‖

(
Θ̂(τ̂)−Θ(τ̂)

)′
g‖2‖Σ(τ̂)xuΘ(τ̂)′g‖2

= ‖Σ(τ̂)xu‖∞‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖21 + 2κ̃(s̄, c0,T,Σxu)‖

(
Θ̂(τ̂)−Θ(τ̂)

)′
g‖2‖Θ(τ̂)′g‖2

≤ ‖Σ(τ̂)xu‖∞‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖21 + 2κ̃(s̄, c0,T,Σxu)‖

(
Θ̂(τ̂)−Θ(τ̂)

)′
g‖2κ̃(s̄, c0,T,Θ)‖g‖2

As ‖Σ(τ̂)xu‖∞ = max1≤l,k≤2pE
[
X

(k)
i (τ̂)X

(l)
i (τ̂)u2

i

]
, κ̃(s̄, c0,T,Σxu) and κ̃(s̄, c0,T,Θ) are assumed
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bounded from Assumption 6,

‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖1

=
∑
j∈H

(|gj |‖Θj(τ̂)−Θj(τ0)‖1)

≤
∑
j∈H
|gj | sup

τ∈T̂
max
j∈H
‖Θj(τ)−Θj(τ0)‖1

≤
√
h sup
τ∈T̂

max
j∈H
‖Θj(τ)−Θj(τ0)‖1

=Op

(
√
hs̄

√
log p

n

)

‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖2

=‖
∑
j∈H

(Θj(τ̂)−Θj(τ0)) |gj |‖2

≤max
j∈H
‖Θj(τ̂)−Θj(τ0)‖2

∑
j∈H
|gj |

≤
√
h sup
τ∈T̂

max
j∈H
‖Θj(τ)−Θj(τ0)‖2

=Op

(
√
hs̄

√
log p

n

)

Furthermore,

|g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

≤ ‖Σ(τ̂)xu‖∞‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖21 + 2κ̃(s̄, c0,T,Σxu)‖

(
Θ̂(τ̂)−Θ(τ̂)

)′
g‖2κ̃(s̄, c0,T,Θ)‖g‖2

≤ Op

(√
hs̄
√

log p
n

)2

+Op

(√
hs̄
√

log p
n

)
= Op

(√
hs̄
√

log p
n

)
Finally, by Assumption 6 (ii),

|Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′ −Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′|

= Op

(
hs̄
√
s3

0

√
log p
n

)
+Op

(
hs̄
√

log p
n

)
+Op

(√
hs̄
√

log p
n

)
= Op

(
hs̄
√
s3

0

√
log p
n

)

Proof of Theorem 3 Case I: no threshold. Step 1.

Step 1.1) Given that τ0 is undefined and unknown in the current setup, it is necessary to show the
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asymptotic standard normality of t′1(τ) = g′Θ(τ)X′(τ)U/n1/2√
g′Θ(τ)Σ(τ)xuΘ(τ)′g

uniformly over τ ∈ T. Subsequently,

for any τ̂ obtained from (2.4), we need to show get t′1(τ̂) and t1 are asymptotically equivalent.

Note that, using E(Ui|Xi) = 0 for all i = 1, ..., n, we obtain

(7.84) E [t′1(τ)] = E

[
g′Θ(τ)

∑n
i=1 Xi(τ)Ui/n

1/2√
g′Θ(τ)Σ(τ)xuΘ(τ)′g

]
= 0,

and

E [t′1(τ)]
2

= E

[
g′Θ(τ0)

∑n
i=1 Xi(τ)Ui/n

1/2√
g′Θ(τ)Σ(τ)xuΘ(τ)′g

]2

= 1.

Hence, to use Lyapounov’s central limit theorem, we check the conditions for a sequence of indepen-

dent random variables, it suffices to show that for some ε > 0∑n
i=1E|g′Θ(τ)X′i(τ)Ui/n

1/2|2+ε

(g′Θ(τ)Σ(τ)xuΘ(τ)′g)1+ε/2
→ 0.

Let S̃(τ) = ∪j∈HSj(τ), then the cardinality supτ∈T |S̃(τ)| = p ∧ hs̄.

E
∣∣∣g′Θ(τ)X′i(τ)Ui/n

1/2
∣∣∣2+ε

≤ E

∣∣∣∣∣
[
‖g′Θ(τ)/n1/2‖1 max

j∈S̃(τ)

(
X

(j)
i (τ)Ui

)]∣∣∣∣∣
2+ε

≤ E

[
‖g′Θ(τ)/n1/2‖2+ε

1 max
j∈S̃(τ)

∣∣∣X(j)
i (τ)Ui

∣∣∣2+ε
]

≤ ‖g′Θ(τ)/n1/2‖2+ε
1 E

[
max
j∈S̃(τ)

∣∣∣X(j)
i (τ)Ui

∣∣∣2+ε
]

≤ ‖g′Θ(τ)/n1/2‖2+ε
1 E

 ∑
j∈S̃(τ)

∣∣∣X(j)
i (τ)Ui

∣∣∣2+ε


≤ ‖g′Θ(τ)/n1/2‖2+ε

1 (p ∧ hs̄) max
j∈S̃(τ)

E

[∣∣∣X(j)
i (τ)Ui

∣∣∣2+ε
]

≤ ‖g′Θ(τ)/n1/2‖2+ε
1 (p ∧ hs̄) max

1≤j≤p
E

[∣∣∣X(j)
i Ui

∣∣∣2+ε
]

= Op

(
(hs̄)2+ε/2

n1+ε/2

)
max

1≤j≤p
E

[(
X

(j)
i Ui

)2+ε
]
∧Op

(
(hs̄)1+ε/2p

n1+ε/2

)
max

1≤j≤p
E

[(
X

(j)
i Ui

)2+ε
]

where the 1st inequality follows from the Holder’s inequality.

By Cauchy–Schwarz inequality

E

[(
X

(j)
i Ui

)4
]
≤ E

[(
X

(j)
i

)4
]
E
[
(Ui)

4
]

is bounded by assumption 1.
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Thus take ε = 2,
∑n
i=1E

∣∣g′Θ(τ)Xi(τ)Ui/n
1/2
∣∣4 = Op

(
(hs̄)3

n2

)
∧Op

(
(hs̄)2p
n2

)
= op(1) by Assump-

tion 6 (iv)

Next, we show that g′Θ(τ0)Σ(τ)xuΘ(τ)′g is asymptotically bounded away from zero. Clearly,

g′Θ(τ)Σ(τ)xuΘ(τ)′g ≥ κ(s̄, c0,T,Σxu)‖g′Θ(τ)‖22
≥ κ(s̄, c0,T,Σxu)‖g′‖22κ(s̄, c0,T,Θ)2

= κ(s̄, c0,T,Σxu)κ(s̄, c0,T,Θ)2,

(7.85)

which is bounded away from zero since κ(s̄, c0,T,Σxu) and κ(s̄, c0,T,Θ) are bounded away from

zero by Assumption 6 (iv). Hence, the Lyapunov condition is satisfied and ∀τ ∈ T, t′1(τ) converges

in distribution to a standard normal.

Step 1.2).

Let

t′′1 =
g′Θ(τ̂)X′(τ̂)U/n1/2√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)g

|g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′Θ(τ̂)X′(τ̂)U/n1/2|

≤‖g′
(

Θ̂(τ̂)−Θ(τ̂)
)
‖1‖X(τ̂)U/n1/2‖∞

Conditional on A1, A2, A3 and A4 and by Lemma 2

=Op(
√
hs̄

√
log p√
n

)Op(
√

log p) = Op(
√
hs̄

log p√
n

) = op(1)

|t′′1 − t1| =
g′
(

Θ(τ̂)X′(τ̂)U/n1/2 − Θ̂(τ̂)X′(τ̂)U/n1/2
)

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

= op(1)

67



|t1 − t′1| =

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g −

√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

)
g′Θ(τ̂)X ′(τ̂)U/n1/2√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

=

(
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

)
g′Θ(τ̂)X ′(τ̂)U/n1/2√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g +

√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

)
≤ |g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|g′Θ(τ̂)X ′(τ̂)U/n1/2√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g +

√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

)

≤
Op

(
h
√
s3

0s̄
2

√
log p
n

)
Op
(√
hs̄ log p

)
√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g +

√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

)
=op(1)

by Lemma 17.

Then combine the above two,

|t1 − t′1| ≤ op(1)

Step 2. By Lemma 15,

t2 =
g′∆(τ̂)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
= op(1).

Finally, by Slutsky’s theorem

t = op(1) + t′1
d→ N(0, 1).

7.7 Proofs for Theorem 3 for Case II. Fixed Threshold.

This subsection explores the case where the threshold effect is well-identified and discontinuous. To

show that the ratio

(7.86) t =

√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
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is asymptotically standard normal. First, by rewriting (4.11),

t = t1 + t2,

where

t1 =
g′Θ̂(τ0)X′(τ0)U/n1/2√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

and

t2 =
g′(Θ̂(τ̂)X′(τ̂)U − g′Θ̂(τ0)X′(τ0)U)//n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n

1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

It suffices to show that t1 is asymptotically standard normal and t2 = op(1).

Lemma 18. Suppose that Assumption1 to 6 be satisfied, conditional on events A1 ,A2, A3, A4, A5,

then g′∆(τ̂) = Op(
s0
√
h log p√
n

).

Proof. Recall that ∆(τ) =
√
n(Θ̂(τ)Σ̂(τ)− I2p)(α̂(τ)− α0)

Thus by holder’s inequality, Lemma 2 and Theorem 2,

g′∆(τ̂) ≤ max
j∈H
|∆j(τ̂)|

∑
j∈H
|gj |

= max
j∈H
|
(

Θ̂j(τ̂)Σ̂(τ̂)− ẽ′j
)√

n(α̂(τ̂)− α0)|
∑
j∈H
|gj |

≤ max
j∈H
|
(

Θ̂j(τ̂)Σ̂(τ̂)− ẽ′j
)√

n(α̂(τ̂)− α0)|
∑
j∈H
|gj |

≤ max
1≤j≤2p

‖Θ̂j(τ̂)Σ̂(τ̂)− ẽ′j‖∞
√
n‖α̂(τ̂)− α0‖1

∑
j∈H
|gj |

≤ C

(
λnode

ẑ1
2(τ̂)j

+
λnode

ẑ2
2(τ̂)j

)
·
√
n · λs0

√
h

= Op(
s0

√
h log p√
n

)

The results of Lemma 18 are similar to those in Lemma 15 but the assumptions differ.

Lemma 19. Let Assumptions 1, 2, 3, 4, 5 and 6 be satisfied and let g be 2p × 1 vector satisfying

‖g‖2 = 1. Then,conditional on events A1 ,A2, A3, A4, A5 ,

‖g′
(

Θ̂(τ̂)− Θ̂(τ0)
)
‖1 = Op

(
√
hs̄

√
log p

n

)

Proof of Lemma. As Qi are continuously distributed and E
[
|X(j)

i X
(l)
i ||Qi = τ

]
is continuous and
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bounded in a neighborhood of τ0, conditions for Lemma A.1 in Hansen (2000) hold. Then

‖Σ(τ0)− Σ(τ̂)‖∞

=‖

[
0 M(τ0)−M(τ̂)

M(τ0)−M(τ̂) M(τ0)−M(τ̂)

]
‖∞

≤‖M(τ0)−M(τ̂)‖∞

= max
1≤j,l≤p

E
[
|X(j)

i X
(l)
i | |1 (Qi < τ0)− 1 (Qi < τ̂)|

]
≤C |τ0 − τ̂ |

=Op

(
log ps0

n

)
where the last inequality is by Lemma A.1 in Hansen (2000) and the last line is due to Theorem 2.

Consider

‖Θj(τ̂)−Θj(τ0)‖1
= ‖Θj(τ̂) (Σj(τ0)− Σj(τ))

′
Θj(τ0)‖1

≤ ‖Θj(τ̂)‖1‖ (Σj(τ0)− Σj(τ̂))
′
Θj(τ0)‖∞

≤ ‖Θj(τ̂)‖1‖Θj(τ0)‖1‖ (Σj(τ0)− Σj(τ̂))
′ ‖∞

Then using Lemma 2

‖g′ (Θ(τ̂)−Θ(τ0)) ‖1

=
∑
j∈H

(|gj |‖Θj(τ̂)−Θj(τ0)‖1)

≤
∑
j∈H
|gj | sup

τ∈T
max
j∈H
‖Θj(τ)−Θj(τ0)‖1

≤
√
h sup
τ∈T

max
j∈H
‖Θj(τ)‖1 max

j∈H
‖Θj(τ0)‖1‖ (Σj(τ0)− Σj(τ))

′ ‖∞

=Op

(√
hs̄s0

log p

n

)
(7.87)

Finally,

‖g′
(

Θ̂(τ̂)− Θ̂(τ0)
)
‖1

≤
∑
j∈H
|gj | sup

τ∈T
max
j∈H
‖Θ̂j(τ)−Θj(τ)‖1 +

∑
j∈H
|gj | sup

τ∈T
max
j∈H
‖Θj(τ)−Θj(τ0)‖1 +

∑
j∈H
|gj | sup

τ∈T
max
j∈H
‖Θ̂j(τ0)−Θj(τ0)‖1

=Op

(
√
hs̄

√
log p

n

)
+Op

(√
hs̄s0

log p

n

)
= Op

(
√
hs̄

√
log p

n

)
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since s0

√
log p
n = op(1) by Assumption 1.

Lemma 20. Suppose that Assumption1 to 6 be satisfied, conditional on events A1 ,A2, A3, A4, A5,

|g′
(

Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U
)
/n1/2| = Op

(√
hs̄

log p√
n

)
+Op

(√
hs̄s0 log p√

n

)
Proof of Lemma . To prove this lemma,we need prove the followings

|g′
(

Θ̂(τ̂)− Θ̂(τ0)
)

X′(τ0)U |/
√
n = op(1),

|g′
(

Θ̂(τ̂)X′(τ̂)− Θ̂(τ̂)X′(τ0)
)
U |/
√
n = op(1).

On the event A1,A3 and A4

‖X
′(τ0)U√
n
‖∞ ≤ 1

2

√
nµλ

√
C2

2 + µλ

Then, by Hölder’s inequality and Lemma 19

|g′
(

Θ̂(τ̂)X′(τ0)− Θ̂(τ0)X′(τ0)
)
U |/
√
n

≤‖g′
(

Θ̂(τ̂)− Θ̂(τ0)
)
‖1‖

X′(τ0)U√
n
‖∞

≤Op

(
√
hs̄

√
log p

n

)
Op(

√
log p)

=Op

(√
hs̄

log p√
n

)
,

(7.88)

Considering ‖X
′(τ̂)U√
n
− X′(τ0)U√

n
‖∞, by Assumption 4 (3.6)

‖X
′(τ̂)U

n
− X′(τ0)U

n
‖∞ = Op(

√
s0 log p

n
).

|g′Θ̂(τ̂) (X′(τ̂)−X′(τ0))U |/
√
n

≤
√
n‖X

′(τ̂)U

n
− X′(τ0)U

n
‖∞‖g′Θ̂(τ̂)‖1

≤
√
n‖X

′(τ̂)U

n
− X′(τ0)U

n
‖∞‖g‖1 max

j∈H
‖Θ̂j(τ̂)‖1

≤
√
nOp

(√
hs̄
)
Op

(√
s0 log p

n

)
= Op

(√
hs̄s0 log p√

n

)
(7.89)
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Hence, combine (7.88) and (7.89)

|g′
(

Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U
)
/n1/2| = Op

(√
hs̄

log p√
n

)
+Op

(√
hs̄s0 log p√

n

)

Lemma 21. Suppose that Assumption1 to 6 be satisfied, conditional on events A1 ,A2, A3, A4, A5,

then

|g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2| = Op

(
s2

0

√
hs̄ log p√
n

)

Proof of Lemma 21. There are only two cases for X′(τ̂)X(τ0):

X′(τ̂)X(τ0) = X′(τ0)X(τ0) or X′(τ̂)X(τ0) = X′(τ̂)X(τ̂), then

|g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2|

≤
√
n
∑
j∈H
|gj |‖Θ̂j(τ̂)‖1‖

[
0 M̂(τ0)− M̂(τ̂)

0 M̂(min{τ0, τ̂})− M̂(τ̂)

] [
β′0 δ′0

]′
‖∞

≤
√
nmax
j∈H
‖Θ̂j(τ̂)‖1

∑
j∈H
|gj |‖M̂(τ0)− M̂(τ̂)‖∞‖δ0‖1

‖M̂(τ0)− M̂(τ̂)‖∞

≤ max
1≤j,l≤p

∣∣∣∣∣ 1n
n∑
i=1

X
(j)
i X

(l)
i [1 (Qi < τ0)− 1 (Qi < τ̂)]

∣∣∣∣∣
≤ max

1≤j,l≤p
sup

|τ−τ0|≤|τ0−τ̂ |

∣∣∣∣∣ 1n
n∑
i=1

X
(j)
i X

(l)
i [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣
≤C5|τ0 − τ̂ | = Op

(
s0 log p

n

)
where the last equality follows from Assumption 4(3.5).

We know that supτ∈T maxj∈H ‖Θ̂j(τ)‖1 = Op(
√
s̄) by Lemma 2
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|g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2|

≤
√
nmax
j∈H
‖Θ̂j(τ̂)‖1

∑
j∈H
|gj |‖M̂(τ0)− M̂(τ̂)‖∞‖δ0‖1

≤
√
nOp(

√
hs̄)Op

(
s0 log p

n

)
‖δ0‖1

=Op

(
‖δ0‖1s0

√
hs̄ log p√
n

)
= Op

(
s2

0

√
hs̄ log p√
n

)

Lemma 22. Suppose that Assumption1 to 6 be satisfied, conditional on events A1 ,A2, A3, A4 and

A5, then

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g| = Op

(
hs̄
√
s3

0

√
log p

n

)
.

Proof of Lemma 22 .

Recall Σ(τ̂)xu =E
[
Xi(τ̂)X′i(τ̂)U2

i

]
= E [Xi(τ̂)X′i(τ̂)]E

[
U2
i

]
,

Ûi(τ̂) =Yi −X′i(τ̂)α̂(τ̂) = Ui + X′i(τ0)α0 −X′i(τ̂)α̂(τ̂),

Σ̂(τ̂)xu =
1

n

n∑
i=1

Xi(τ̂)X′i(τ̂)Ûi(τ̂)2,

and set Σ̃(τ̂)xu =
1

n

n∑
i=1

Xi(τ̂)X′i(τ̂)U2
i

We first show that

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

= |g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g + g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ̃(τ̂)xuΘ(τ̂)′g

+g′Θ(τ̂)Σ̃(τ̂)xuΘ(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g‖∞
≤ |g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g|+ |g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ̃(τ̂)xuΘ(τ̂)′g‖∞

+|g′Θ(τ̂)Σ̃(τ̂)xuΘ(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

To prove this lemma,we need prove the followings

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g| = op(1)

|g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g| = op(1)
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|g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g| = op(1)

Step 1.

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g|

≤ |g′Θ̂(τ̂)
(

Σ̂(τ̂)xu − Σ̃(τ̂)xu

)
Θ̂(τ̂)′g|

≤ ‖g′Θ̂(τ̂)‖21‖Σ̂(τ̂)xu − Σ̃(τ̂)xu‖∞

Before we expand and simplify equations, we note that

α′0Xi(τ0)X′i(τ̂)α̂(τ̂) = α̂′(τ̂)Xi(τ̂)X′i(τ0)α0
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Σ̂(τ̂)xu − Σ̃(τ̂)xu

=
1

n

n∑
i=1

(
Xi(τ̂)X′i(τ̂)Û2

i (τ̂)−Xi(τ̂)X′i(τ̂)U2
i

)
=

1

n

n∑
i=1

(
Xi(τ̂)X′i(τ̂)(Ui + X′i(τ0)α0 −X′i(τ̂)α̂(τ̂))2 −Xi(τ̂)X′i(τ̂)U2

i

)
=

1

n

n∑
i=1

Xi(τ̂)X′i(τ̂)U2
i

+
1

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α′0Xi(τ0)X′i(τ0)α0)

+
1

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α̂′(τ̂)Xi(τ̂)X′i(τ̂)α̂(τ̂))

− 2

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α′0Xi(τ0)X′i(τ̂)α̂(τ̂))

+
2

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α′0Xi(τ0)Ui)

− 2

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α̂(τ̂)′Xi(τ̂)Ui)

− 1

n

n∑
i=1

(
Xi(τ̂)X′i(τ̂)U2

i

)
=

1

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α0X
′
i(τ0) (X′i(τ0)α0 −X′i(τ̂)α̂(τ̂)))

+
1

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)α̂(τ̂)X′i(τ̂) (X′i(τ̂)α̂(τ̂)−X′i(τ0)α0))

+
2

n

n∑
i=1

(Xi(τ̂)X′i(τ̂)Ui (α′0Xi(τ0)− α̂(τ̂)′Xi(τ̂)))

Recall Lemma 16,

max
1≤k,l,j≤p

| 1
n

n∑
i=1

(X
(k)
i X

(l)
i X

(j)
i )2 − E

[
(X

(k)
i X

(l)
i X

(j)
i )2

]
| = Op

(√
log p√
n

)

max
1≤k,l≤p

| 1
n

n∑
i=1

(X
(k)
i X

(l)
i Ui)

2 − E
[
(X

(k)
i X

(l)
i Ui)

2
]
| = Op

(√
log p√
n

)
Applying Theorem 2,

‖α̂(τ̂)‖1 ≤ ‖α0‖1 +Op

(
s0

√
log p

n

)
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‖X(τ̂)α̂(τ̂)−X(τ0)α0‖n = Op

(
√
s0

√
log p

n

)
‖α0‖1 = Op(s0)

By Cauchy-Schwarz inequality and holder’s inequality

max1≤k,l≤2p | 1n
∑n
i=1

(
X

(k)
i (τ̂)X

(l)
i (τ̂)α′0Xi(τ0) (X′i(τ0)α0 −X′i(τ̂)α̂(τ̂)

)
|

≤
√

max1≤k,l≤2p max1≤i≤n
1
n

∑n
i=1(X

(k)
i (τ̂)X

(l)
i (τ̂))2 (α0X′i(τ0))

2‖X(τ0)α0 −X(τ̂)α̂(τ̂)‖n

≤
√

max1≤k,l≤2p max1≤i≤n
1
n

∑n
i=1(X

(k)
i (τ̂)X

(l)
i (τ̂))2

(
max1≤k≤2p X

(k)
i (τ0)

)2

‖α0‖21‖X(τ0)α0 −X(τ̂)α̂(τ̂)‖n

≤
√

max1≤k,l,j≤p
1
n

∑n
i=1(X

(k)
i X

(l)
i X

(j)
i )2‖α0‖21 · 1 (Qi < τ0) · 1 (Qi < τ̂)‖X(τ̂)α̂(τ̂)−X(τ0)α0‖n

≤ Op

(√
s3

0

√
log p
n

)

max1≤k,l≤2p | 1n
∑n
i=1

(
X

(k)
i (τ̂)X

(l)
i (τ̂)α̂(τ̂)X′i(τ̂) (X′i(τ̂)α̂(τ̂)−X′i(τ0)α0)

)
≤ max1≤k,l≤2p max1≤i≤n

√
1
n

∑n
i=1(X

(k)
i (τ̂)X

(l)
i (τ̂))2 (α̂′(τ̂)Xi(τ̂))

2‖X(τ̂)α̂(τ̂)−X(τ0)α0‖n

≤
√

max1≤k,l,j≤p
1
n

∑n
i=1(X

(k)
i X

(l)
i X

(j)
i )2‖α̂(τ̂)‖21|1 (Qi < τ̂)‖X(τ̂)α̂(τ̂)−X(τ0)α0‖n

≤ Op

(√
s3

0

√
log p
n

)

max1≤k,l≤2p | 2n
∑n
i=1 (X′i(τ0)α0 −X′i(τ̂)α̂(τ̂)) (X

(k)
i (τ̂)X

(l)
i (τ̂))Ui|

≤ 2

√
max1≤k,l≤p

1
n

∑n
i=1(X

(k)
i X

(l)
i Ui)2 · 1 (Qi < τ̂)‖X(τ0)α0 −X(τ̂)α̂(τ̂)‖n

≤ Op

(
√
s0

√
log p
n

)
Hence,

‖Σ̂(τ̂)xu − Σ̃(τ̂)xu‖∞ = Op

(√
s3

0

√
log p

n

)

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g|

≤ ‖g′Θ̂(τ̂)‖21‖Σ̂(τ̂)xu − Σ̃(τ̂)xu‖∞

≤
(∑

j∈H |gj |maxj∈H supτ∈T ‖Θ̂(τ̂)‖1
)2

‖Σ̂(τ̂)xu − Σ̃(τ̂)xu‖∞

= Op (hs̄)Op

(√
s3

0

√
log p
n

)
= Op

(
hs̄
√
s3

0

√
log p
n

)
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Step 2.Next, we show that

|g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g| = op(1)

Note that

Σ̃(τ̂)xu − Σ(τ̂)xu

= 1
n

∑n
i=1 Xi(τ̂)X′i(τ̂)U2

i − E
[
Xi(τ̂)X′i(τ̂)U2

i

]

Recall Lemma 16,

max
1≤l,k≤2p

| 1
n

n∑
i=1

X
(k)
i (τ̂)X

(l)
i (τ̂)U2

i − E
[
X

(k)
i (τ̂)X

(l)
i (τ̂)U2

i

]
| = Op

(√
log p√
n

)

Therefore

|g′Θ̂(τ̂)Σ̃(τ̂)xuΘ̂(τ̂)′g − g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g|

≤ |g′Θ̂(τ̂)
(

Σ̃(τ̂)xu − Σ(τ̂)xu

)
Θ̂(τ̂)′g|

≤ ‖g′Θ̂(τ̂)‖21‖Σ̃(τ̂)xu − Σ(τ̂)xu‖∞

≤
(∑

j∈H |gj |maxj∈H supτ∈T ‖Θ̂j(τ̂)‖1
)2

‖Σ̃(τ̂)xu − Σ(τ̂)xu‖∞

≤ Op (hs̄)Op

(√
log p
n

)
= Op

(
hs̄
√

log p
n

)
Step 3.Next, we show that

|g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g| = op(1)

By Lemma 6.1 in van de Geer et al. (2014)

|g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

≤ ‖Σ(τ̂)xu‖∞‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖21 + 2‖

(
Θ̂(τ̂)−Θ(τ̂)

)′
g‖2‖Σ(τ̂)xuΘ(τ̂)′g‖2

= ‖Σ(τ̂)xu‖∞‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖21 + 2κ̃(s̄, c0,T,Σxu)‖

(
Θ̂(τ̂)−Θ(τ̂)

)′
g‖2‖Θ(τ̂)′g‖2

≤ ‖Σ(τ̂)xu‖∞‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖21 + 2κ̃(s̄, c0,T,Σxu)‖

(
Θ̂(τ̂)−Θ(τ̂)

)′
g‖2κ̃(s̄, c0,T,Θ)‖g‖2

As ‖Σ(τ̂)xu‖∞ = max1≤l,k≤2pE
[
X

(k)
i (τ̂)X

(l)
i (τ̂)u2

i

]
, κ̃(s̄, c0,T,Σxu) and κ̃(s̄, c0,T,Θ) are assumed
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bounded from Assumption 6,

‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖1

=
∑
j∈H

(|gj |‖Θj(τ̂)−Θj(τ0)‖1)

≤
∑
j∈H
|gj | sup

τ∈T̂
max
j∈H
‖Θj(τ)−Θj(τ0)‖1

≤
√
h sup
τ∈T̂

max
j∈H
‖Θj(τ)−Θj(τ0)‖1

=Op

(
√
hs̄

√
log p

n

)

‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖2

=‖
∑
j∈H

(Θj(τ̂)−Θj(τ0)) |gj |‖2

≤max
j∈H
‖Θj(τ̂)−Θj(τ0)‖2

∑
j∈H
|gj |

≤
√
h sup
τ∈T̂

max
j∈H
‖Θj(τ)−Θj(τ0)‖2

=Op

(
√
hs̄

√
log p

n

)

Furthermore,

|g′Θ̂(τ̂)Σ(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g|

≤ ‖Σ(τ̂)xu‖∞‖
(

Θ̂(τ̂)−Θ(τ̂)
)′
g‖21 + 2κ̃(s̄, c0,T,Σxu)‖

(
Θ̂(τ̂)−Θ(τ̂)

)′
g‖2κ̃(s̄, c0,T,Θ)‖g‖2

≤ Op

(√
hs̄
√

log p
n

)2

+Op

(√
hs̄
√

log p
n

)
= Op

(√
hs̄
√

log p
n

)
Finally, by Assumption 6 (ii),

|Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′ −Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′|

= Op

(
hs̄
√
s3

0

√
log p
n

)
+Op

(
hs̄
√

log p
n

)
+Op

(√
hs̄
√

log p
n

)
= Op

(
hs̄
√
s3

0

√
log p
n

)

Lemma 23. Suppose that Assumption1 to 6 be satisfied, conditional on events A1, A2, A3, A4, A5,
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then

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g| = op(1).

Proof of Lemma 23.

|g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g|

= |Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′ −Θ(τ0)Σ(τ̂)xuΘ(τ̂)′ + g′Θ(τ0)Σ(τ̂)xuΘ(τ̂)′g − g′Θ(τ0)Σ(τ̂)xuΘ(τ0)′g

+g′Θ(τ0)Σ(τ̂)xuΘ(τ0)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g|

≤ |g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g − g′Θ(τ0)Σ(τ̂)xuΘ(τ̂)′g‖∞ + ‖g′Θ(τ0)Σ(τ̂)xuΘ(τ̂)′g − g′Θ(τ0)Σ(τ̂)xuΘ(τ0)′g‖∞
+‖g′Θ(τ0)Σ(τ̂)xuΘ(τ0)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g|

To prove this lemma, we need prove the followings

|g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g − g′Θ(τ0)Σ(τ̂)xuΘ(τ̂)′g| = op(1)

|g′Θ(τ0)Σ(τ̂)xuΘ(τ̂)′g − g′Θ(τ0)Σ(τ̂)xuΘ(τ0)′g| = op(1)

|g′Θ(τ0)Σ(τ̂)xuΘ(τ0)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g| = op(1)

Firstly, since Θ(τ̂) is sysmetric,‖Θ(τ̂)′g‖1 = ‖g′Θ(τ̂)‖1, also ‖Σ(τ̂)xu‖∞ is bounded by Assumption

1, combine with (7.87)

|g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g − g′Θ(τ0)Σ(τ̂)xuΘ(τ̂)′g|

≤ ‖g′ (Θ(τ̂)−Θ(τ0)) ‖1‖Σ(τ̂)xuΘ(τ̂)′g‖∞
≤ ‖g′ (Θ(τ̂)−Θ(τ0)) ‖1‖Σ(τ̂)xu‖∞‖g′Θ(τ̂)‖1
≤ Op

(√
hs̄s0

log p
n

)
Op

(√
hs̄
)

= Op

(
h
√
s̄3s0

log p
n

)
Secondly, as ‖g′ (Θ(τ̂)−Θ(τ0)) ‖1 = ‖ (Θ(τ̂)−Θ(τ0))

′
g‖1

|g′Θ(τ0)Σ(τ̂)xuΘ(τ̂)′g − g′Θ(τ0)Σ(τ̂)xuΘ(τ0)′g|

≤ ‖g′Θ(τ̂)‖1‖Σ(τ̂)xu‖∞‖ (Θ(τ̂)−Θ(τ0))
′
g‖1

= Op

(
h
√
s̄3s0

log p
n

)
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Note,

Σ(τ̂)xu − Σ(τ0)xu

= E
[
Xi(τ̂)X′i(τ̂)u2

i

]
− E

[
Xi(τ0)X′i(τ0)u2

i

]
= E [Xi(τ̂)X′i(τ̂)−Xi(τ0)X′i(τ0)]E

[
u2
i

]
= (Σ(τ̂)− Σ(τ0))E

[
u2
i

]
= E [XiX

′
i]E

[
u2
i

]
|τ0 − τ̂ |

and

‖Σ(τ̂)xu − Σ(τ0)xu‖∞ = ‖Σ(τ̂)− Σ(τ0)‖∞E
[
u2
i

]
= Op

(
s0

log p

n

)

|g′Θ(τ0)Σ(τ̂)xuΘ(τ0)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g|

≤ |g′Θ(τ0) (Σ(τ̂)xu − Σ(τ0)xu) Θ(τ0)′g|

≤ ‖g′Θ(τ0)‖21‖Σ(τ̂)xu − Σ(τ0)xu‖∞
= Op (hs̄)Op

(
s0

log p
n

)
= Op

(
hs̄s0

log p
n

)
|g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g−g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g| = Op

(
h
√
s̄3s0

log p

n

)
+Op

(
hs̄s0

log p

n

)
= Op

(
h
√
s̄3s0

log p

n

)
Combine with Lemma 22

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g−g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g| = Op

(
hs̄
√
s3

0

√
log p

n

)
+Op

(
h
√
s̄3s0

log p

n

)
= Op

(
h
√
s3

0s̄
3

√
log p

n

)

Proof of Theorem 3 Case II: fixed threshold. We show that the ratio

(7.90) t =

√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

is asymptotically standard normal. First, note that by (4.11) one can write

t = t1 + t2,
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where

t1 =
g′Θ̂(τ0)X′(τ0)U/n1/2√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

and

t2 =
g′(Θ̂(τ̂)X′(τ̂)U − g′Θ̂(τ0)X′(τ0)U)//n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n

1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

It suffices to show that t1 is asymptotically standard normal and t2 = op(1).

Step 1.

Step 1.1) This step, referring to the proof detailed in Step 1.1 for the proof of Theorem 3 for the

no-threshold case, shows that in the fixed-threshold case, t′1 = g′Θ(τ0)X′(τ0)U/n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)g

is asymptotically

standard normal.

Step 1.2). Let

t′′1 =
g′Θ(τ0)X′(τ0)U/n1/2√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)g

|g′Θ̂(τ0)X′(τ0)U/n1/2 − g′Θ(τ0)X′(τ0)U/n1/2|

≤‖g′
(

Θ̂(τ0)−Θ(τ0)
)
‖1‖X(τ0)U/n1/2‖∞

Conditional on A1, A2, A3 and A4 and by Lemma 2

=Op(
√
hs̄

√
log p√
n

)Op(
√

log p) = Op(
√
hs̄

log p√
n

) = op(1)

|t′′1 − t1| =
g′
(

Θ̂(τ0)X′(τ0)U/n1/2 −Θ(τ0)X′(τ0)U/n1/2
)

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤op(1)
1√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
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|t′1 − t′′1 | =

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g −

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

)
g′Θ(τ0)X′(τ0)u/n1/2√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

=

(
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

)
g′Θ(τ0)X′(τ0)u/n1/2√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g +

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

)
≤ |g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g|g′Θ(τ0)X′(τ0)u/n1/2√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g +

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

)

≤
Op

(
h
√
s3

0s̄
3

√
log p
n

)
Op
(√
hs̄ log p

)
√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g +

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

)

=
Op

(
(hs0)

3
2 s̄2 log p√

n

)
√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g +

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

)
=

op(1)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

(√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g +

√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

)

by Lemma 23.

Then combine the above two,

|t1 − t′1| ≤ op(1)

Step 2. By Lemma 20, 21, and 18,

t2 =
g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)//n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n

1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

= op(1).

Step 3. Finally, by Slutsky’s theorem

t = op(1) + t′1
d→ N(0, 1).
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Therefore Lemma 23 implies that

sup
α0∈A(2)

`0
(s0)

|Θ̂(τ̂)Σ̂xu(τ̂)Θ̂′(τ̂)−Θ(τ0)Σxu(τ0)Θ′(τ0)| = op(1)(7.91)

where

A(2)
`0

(s0) =
{
α0 ∈ R2p | ‖α0‖∞ ≤ C,M(α0) ≤ s0, δ0 6= 0

}
.

Proof of Theorem 4 . For ε > 0, define

F1,n =

{
sup

α0∈B`0 (s0)

|g′∆(τ̂)| < ε

}

F2,n =

{
sup

α0∈B`0 (s0)

∣∣∣∣∣g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g
− 1

∣∣∣∣∣ < ε

}

F3,n =

{
sup

α0∈B`0 (s0)

|g′Θ̂(τ̂)X ′(τ̂)U/n1/2 − g′Θ(τ̂)X ′(τ̂)U/n1/2| < ε

}

F4,n =

 sup
α0∈A(2)

`0
(s0)

|g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2| < ε


F5,n =

 sup
α0∈A(2)

`0
(s0)

|g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)//n1/2| < ε


F6,n =

 sup
α0∈A(2)

`0
(s0)

|g′Θ̂(τ0)X ′(τ0)U/n1/2 − g′Θ(τ0)X ′(τ0)U/n1/2| < ε


F7,n =

 sup
α0∈A(2)

`0
(s0)

∣∣∣∣∣ g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
− 1

∣∣∣∣∣ < ε


Applying Lemma 15 (and 18), 17, 2,21, 20, 19, and 23, respectively, we observe that the proba-

bilities of these sets all approach one. Thus for every t ∈ R,
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∣∣∣∣∣∣P


√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
≤ t

− Φ(t)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣P {δ0 6= 0}P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
≤ t


+P {δ0 = 0}P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t

− Φ(t)

∣∣∣∣∣∣
≤P {δ0 6= 0}

∣∣∣∣∣∣P
g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n

1/2√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t

− Φ(t)

∣∣∣∣∣∣
+ P {δ0 = 0}

∣∣∣∣∣∣P
g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
≤ t

− Φ(t)

∣∣∣∣∣∣

(7.92)

where P {δ0 = 0}+ P {δ0 6= 0} = 1, and these probabilities are between 0 and 1. Let’s first consider

the term in the final inequality of (7.92) for the case without a threshold∣∣∣∣∣∣P
g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
≤ t

− Φ(t)

∣∣∣∣∣∣
≤P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t,F1,n,F2,n,F3,n

+ P
{
Fc1,n ∪ Fc2,n ∪ Fc3,n

}
.

,(7.93)

There exists a positive constant D1 such that

P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t,F1,n,F2,n,F3,n


=P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g
,F1,n,F2,n,F3,n


≤P

{
g′Θ(τ̂)X ′(τ̂)U/n1/2√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

≤ t(1 + ε) +
ε+ ε√

g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

}

≤P

{
g′Θ(τ̂)X ′(τ̂)U/n1/2√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

≤ t(1 + ε) +D1ε

}
≤Φ(t(1 + ε) +D1ε) + ε

(7.94)

where the last inequality is derived from the proof of Theorem 3, where we established the asymptotic

normality of g′Θ(τ̂)X′(τ̂)U/n1/2√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

. Therefore, since the right-hand sides in (7.94) do not depend on
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α0, we obtain

sup
α0∈A(1)

`0
(s0)

P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t,F1,n,F2,n,F3,n

 ≤ P

{
g′Θ(τ̂)X ′(τ̂)U/n1/2√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

≤ t(1 + ε) +D1ε

}
.

(7.95)

The above arguments hold for all ε > 0. By the continuity of Φ(·), for any η > 0, we can choose ε

to be sufficiently small and conclude that

sup
α0∈A(1)

`0
(s0)

P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t,F1,n,F2,n,F3,n

 ≤ Φ(t) + η + ε,(7.96)

Next, considering that g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g is bounded away from zero, there exists

P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t,F1,n,F2,n,F3,n


=P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g
,F1,n,F2,n,F3,n


≥P

{
g′Θ(τ̂)X ′(τ̂)U/n1/2√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

≤ t(1− ε)− ε+ ε√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

,F1,n,F2,n,F3,n

}

≥P

{
g′Θ(τ̂)X′(τ̂)U/n1/2√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

≤ t(1− ε)−D1ε

}
+ P {F1,n ∩ F2,n ∩ F3,n} − 1

≥Φ(t(1− ε)−D1ε)− ε+ P {F1,n ∩ F2,n ∩ F3,n} − 1,

(7.97)

where the last inequality arises from the asymptotic normality of g′Θ(τ̂)X′(τ̂)U/n1/2√
g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g

.

As P {F1,n ∩ F2,n ∩ F3,n} can be made arbitrarily close to one by choosing n sufficiently large

and ε sufficiently small, we have

inf
α0∈A(1)

`0
(s0)

P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t,F1,n,F2,n,F3,n

 ≥ Φ(t(1− ε)−D1ε)− ε.(7.98)

By the continuity of Φ(·), for any η > 0, we can choose ε to be sufficiently small and conclude

that

inf
α0∈A(1)

`0
(s0)

P

g′Θ̂(τ̂)X′(τ̂)U/n1/2 − g′∆(τ̂)√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t,F1,n,F2,n,F3,n

 ≥ Φ(t)− η − 2ε(7.99)
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Combining (7.96) and (7.99), since sup
α0∈A(1)

`0
(s0)

P
{
Fc1,n ∪ Fc2,n ∪ Fc3,n

}
→ 0, we obtain

∣∣∣∣∣∣ sup
α0∈A(1)

`0
(s0)

P


√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
≤ t

− Φ(t)

∣∣∣∣∣∣→ 0.(7.100)

Considering the term in the final inequality of (7.92) for the case with a fixed threshold

∣∣∣∣∣∣P
g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n

1/2√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

≤ t

− Φ(t)

∣∣∣∣∣∣
≤P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


+P
{
Fc1,n ∪ Fc4,n ∪ Fc5,n ∪ Fc6,n ∪ Fc7,n

}

(7.101)

Since g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g does not depend on α0 and is bounded away from zero, there exists

a positive constant D2 such that

P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


≤P

{
g′Θ(τ0)X′(τ0)U//n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

≤ t(1 + ε) +
4ε√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

}

≤P

{
g′Θ(τ0)X′(τ0)U//n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

≤ t(1 + ε) +D2ε

}

(7.102)

Therefore, since the right-hand sides in (7.102) do not depend on α0, we obtain

sup
α0∈A(2)

`0
(s0)

P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


≤P

{
g′Θ̂(τ0)X′(τ0)U//n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

≤ t(1 + ε) +D2ε

}
(7.103)

In the proof of Theorem 3, we established the asymptotic normality of g′Θ̂(τ0)X′(τ0)U//n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

.Then,

for sufficiently large n,

sup
α0∈A(2)

`0
(s0)

P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


≤Φ(t(1 + ε) +D2ε) + ε

(7.104)

The above arguments hold for all ε > 0. By the continuity of Φ(·), for any η > 0, we can choose ε to

be sufficiently small and conclude that

sup
α0∈A(2)

`0
(s0)

P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


≤Φ(t) + η + ε.

(7.105)

Next, considering that g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g does not depend on α0 and is bounded away from zero,

there exists
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P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


≥P

{
g′Θ(τ0)X′(τ0)U//n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

≤ t(1 + ε)− 4ε√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

,F1,n,F4,n,F5,n,F6,n,F7,n

}

≥P

{
g′Θ(τ0)X′(τ0)U//n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

≤ t(1 + ε)−D2ε

}
+ P {F1,n ∩ F4,n ∩ F5,n ∩ F6,n ∩ F7,n} − 1

(7.106)

As the right-hand sides in the above display do not depend on α0, and P {F1,n ∩ F4,n ∩ F5,n ∩ F6,n ∩ F7,n}
can be made arbitrarily close to one by choosing n sufficiently large and ε sufficiently small, we have

inf
α0∈A(2)

`0
(s0)

P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


≥P

{
g′Θ̂(τ0)X′(τ0)U//n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

≤ t(1− ε)−D2ε

}
− ε.

(7.107)

In the proof of Theorem 3, we established the asymptotic normality of g′Θ̂(τ0)X′(τ0)U//n1/2√
g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g

.Then,

for sufficiently large n,

inf
α0∈A(2)

`0
(s0)

P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


≥Φ(t(1− ε)−D2ε)− ε

(7.108)

By the continuity of Φ(·), for any η > 0, we can choose ε to be sufficiently small and conclude that

inf
α0∈A(2)

`0
(s0)

P

g′Θ̂(τ0)X′(τ0)U//n1/2 − g′∆(τ̂) + g′(Θ̂(τ̂)X′(τ̂)U − Θ̂(τ0)X′(τ0)U)/n1/2 + g′Θ̂(τ̂)(X′(τ̂)X(τ0)−X′(τ̂)X(τ̂))α0/n
1/2√

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
≤ t

√
g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g

g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g
,F1,n,F4,n,F5,n,F6,n,F7,n


≥Φ(t)− η − 2ε

(7.109)

Combining (7.105) and (7.109), since sup
α0∈A(2)

`0
(s0)

P
{
Fc1,n ∪ Fc4,n ∪ Fc5,n ∪ Fc6,n ∪ Fc7,n

}
→ 0 we

obtain ∣∣∣∣∣∣ sup
α0∈A(2)

`0
(s0)

P


√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
≤ t

− Φ(t)

∣∣∣∣∣∣→ 0(7.110)

Thus (7.92) yields ∣∣∣∣∣∣ sup
α0∈B`0 (s0)

P


√
ng′(â(τ̂)− α0)√

g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g
≤ t

− Φ(t)

∣∣∣∣∣∣→ 0(7.111)
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To see (4.33),

P
{
α

(j)
0 /∈

[
â(j)(τ̂)− z1−α/2

σ̂(τ̂)j√
n
, â(j)(τ̂) + z1−α/2

σ̂(τ̂)j√
n

]}
=P

{∣∣∣∣∣
√
n(â(j)(τ̂)− α(j)

0 )

σ̂(j)

∣∣∣∣∣ > z1−α/2

}

=P

{√
n(â(j)(τ̂)− α(j)

0 )

σ̂(j)
> z1−α/2

}
+ P

{√
n(â(j)(τ̂)− α(j)

0 )

σ̂(j)
< −z1−α/2

}

≤1− P

{√
n(â(j)(τ̂)− α(j)

0 )

σ̂(j)
≤ z1−α/2

}
+ P

{√
n(â(j)(τ̂)− α(j)

0 )

σ̂(j)
< −z1−α/2

}
(7.112)

Thus, taking the supremum over supα0∈B`0 (s0) and letting n tend to infinity yields an inequality in

(4.33) via (4.32).

Finally turn to (4.34), by Lemma 17 and 23 we know

sup
α0∈A(1)

`0
(s0)

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ̂)Σ(τ̂)xuΘ(τ̂)′g| = op(1),

and

sup
α0∈A(2)

`0
(s0)

|g′Θ̂(τ̂)Σ̂(τ̂)xuΘ̂(τ̂)′g − g′Θ(τ0)Σ(τ0)xuΘ(τ0)′g| = op(1).

Hence, choosing g = ej and φmax(Θ(τ))) = 1/φmin(Σ(τ)) for τ ∈ T,

sup
α0∈A(1)

`0
(s0)

diam

[
â(j)(τ̂)− z1−α/2

σ̂(τ̂)j√
n
, â(j)(τ̂) + z1−α/2

σ̂(τ̂)j√
n

]
= sup
α0∈A(2)

`0
(s0)

2σ̂(j)z1−α/2/
√
n

=2

 sup
α0∈A(1)

`0
(s0)

√
e′jΘ(τ̂)Σ(τ̂)xuΘ(τ̂)′ej + op(1)

 z1−α/2/
√
n

≤2

(√
φmax(Θ(τ̂))

1

φmin(Σ(τ̂))
+ op(1)

)
z1−α/2/

√
n = Op(1/

√
n)

(7.113)

sup
α0∈A(2)

`0
(s0)

diam

[
â(j)(τ̂)− z1−α/2

σ̂(τ̂)j√
n
, â(j)(τ̂) + z1−α/2

σ̂(τ̂)j√
n

]
= sup
α0∈A(2)

`0
(s0)

2σ̂(j)z1−α/2/
√
n

=2

 sup
α0∈A(2)

`0
(s0)

√
e′jΘ(τ0)Σ(τ0)xuΘ(τ0)′ej + op(1)

 z1−α/2/
√
n

≤2

(√
φmax(Θ(τ0))

1

φmin(Σ(τ0))
+ op(1)

)
z1−α/2/

√
n = Op(1/

√
n)

(7.114)
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Therefore, (4.34) is proven.

7.8 Time Series Model

While we develop the theory in the context of independent data, we also explain how the theory

remains applicable in time series data models with certain assumptions modified.

Assumption 7. (i){Xi, Ui, Qi}ni=1 are sequences of (strictly) stationary and ergodic random vari-

ables. Furthermore, marginal distribution of {Qi}ni=1 is uniform (0, 1) and {Ui}ni=1, and {Xi}ni=1

are independent. (ii)For the strong mixing variables Xi, Ui: α(i) ≥ exp(−Cir0), for a positive

constant r0 > 0. (iii)There exists positive constants r1, r2,and another set of positive constants

b1,b2,s1, s2 > 0, and for i = 1, · · · , n, and j = 1, · · · , p P {|Ui| > s1} ≤ exp(−(s1/b1)r1) and

P
{
|X(j)

i | > s2

}
≤ exp(−(s2/b2)r2) (iv)There exists 0 < γ1 < 1 such that γ−1

1 = 3r−1
1 + r−1

0 and

3r−1
2 + r−1

0 > 1. (v)There exist positive constants r3 and another set of positive constants b3, s3 > 0.

For i = 1, · · · , n, and j = 1, · · · , p, P
{
|υ(j)
i | > s3

}
≤ exp (−(s3/b3)r3), and the same γ1 as in (iv)

such that 3r−1
3 + r−1

0 > 1.

Assumption 7 is regarded as a modification of Assumption 1, while keeping other assumptions

unchanged. It is noteworthy that stationary GARCH models with finite second moments and con-

tinuous error distributions, as well as causal ARMA processes with continuous error distributions,

and a specific class of stationary Markov chains satisfy our Assumptions 7. Similar assumptions are

discussed in Chang et al. (2018) and Caner et al. (2023).

The following is Lemma A.3(i) of Fan et al. (2011) under Assumption 7:

P

{
max

1≤j≤p
max

1≤l≤p
| 1
n

n∑
i=1

X
(j)
i X

(l)
i − E[(X

(j)
i X

(l)
i ]| ≥ C

√
log p√
n

}
= O(

1

p2
),

The following is Lemma B.1(ii) of Fan et al. (2011) under Assumption 7:

P

{
max

1≤j≤p
| 1
n

n∑
i=1

UiX
(j)
i | ≥ C

√
log p√
n

}
= O(

1

p2
)

The proof of Lemma A.3(i) and Lemma B.1(ii) in Fan et al. (2011) relies on the maximal in-

equality presented in Lemma A.2 of the same reference, attributed to Theorem 1 in Merlevède et al.

(2011).

Apply the same techniques employed in the proofs uniformly over τ ∈ T, incorporating an

additional layer as specified by (7.15), we can show

P

{
max

1≤j≤p
sup
τ∈T

1

n

n∑
i=1

UiX
(j)
i 1{Qi < τ} ≥ C

√
log np√
n

}
= O(

1

n2p2
)
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P

{
sup
τ∈T

max
1≤j≤p

max
1≤l≤p

| 1
n

n∑
i=1

X
(j)
i X

(l)
i 1{Qi < τ} − E[X

(j)
i X

(l)
i 1{Qi < τ}]| ≥ C

√
log np√
n

}
= O(

1

n2p2
),

By substituting the maximal inequality from Lemma A.2 in Fan et al. (2011), under Assumption

7, in place of the inequalities from Lemma E.1 and E.2 of Chernozhukov et al. (2017) used in all

previous proofs, we can establish that P{A1}, P{A2}, P{A3}, P{A4}, and P{A5} approach 1 for all

sufficiently large n and p > n. These results imply that our framework encompasses the time series

data threshold regression model.

7.9 Threshold selection consistency by thresholding

In the case of a linear model, van de Geer et al. (2014) has already addressed desparsified LASSO

estimation for uniformly valid confidence bands. However, when dealing with a well-identified and

discontinuous threshold effect, we need to propose a desparsified LASSO. It is crucial to determine

whether a threshold is present or absent, even in the context of high-dimensional threshold models

with random regressors. But econometricians do not have prior knowledge of whether a threshold

is present. Precise variable selection becomes crucial. As pointed out by Callot et al. (2017), a

sup-norm bound provides more accurate variable selection results for the thresholded scaled LASSO

compared to results based on `1 bounds. The latter tends to be larger due to the presence of the

unknown sparsity s0.Up to this point, we have established oracle inequalities for the prediction norm

and `1 errors of our estimates. Before delving into the desparsification of the estimator for test and

confidence interval construction, we address the threshold detection issue.

The situation where δ0 = 0 is non-trivial since the consistency of an estimator does not provide

selection consistency. Suppose δ0 = 0, Theorem 1 shows that

δ̂(j)(τ̂)
p→ 0,

for each j ∈ {1, · · · p}. However, this does not imply that we will correctly estimate zero coefficients

as zero. The consistency implies that for all ε > 0,

P
{
|δ̂(j)(τ̂)| ≥ ε

}
→ 0

But as we need to control the correct model, we instead require

P
{
δ̂(j)(τ̂) = 0

}
→ 1.(7.115)

(7.115) states that, with a consistent estimator, selection consistency comes from (7.115). In

particular, LASSO has a tendency to overshoot the correct model, finding more nonzero coefficients

than the true number. Strictly speaking, if the estimated number of nonzero coefficients is ŝ, then in

finite samples LASSO has a tendency to obtain ŝ > s0. To our scaled threshold model, the LASSO
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estimator defined in (2.4) may be much more over-parameterized in that τ and δ are added to β as

parameters.

We next turn to variable selection by means of thresholding. For this purpose, we follow Callot

et al. (2017) to define the thresholded LASSO estimator5as

δ̃(j)(τ̂) =

{
δ̂(j)(τ̂), if |δ̂(j)(τ̂)| ≥ H,

0, if |δ̂(j)(τ̂)| < H.
(7.116)

where H is the threshold determining whether a coefficient should be classified as zero or nonzero

and δ̂(j)(τ̂) are elements of the LASSO estimator defined by (2.4). In particular, we shall see that

choosing H = 2Cλ results in consistent model selection.

Theorem 5 (Threshold selection consistency). Let Assumptions 1-4 hold and assume that minj∈J(δ0) |δ
(j)
0 | >

3Cλ. Then ∀ε > 0, there exists a C such that for H = 2Cλ = 2C
√

log p
n , P

{
J(δ0) = J(δ̃(τ̂))

}
≥ 1−ε

as n→∞.

Theorem 5 is derived from Theorem 4 in Callot et al. (2017). The discussion on choosing the

thresholding parameter C through the Bayesian Information Criterion (BIC) is omitted, as it is

similarly implemented in the simulation section of Callot et al. (2017). Theorem 5 outlines sufficient

conditions for the thresholded LASSO to identify the correct sparsity pattern of δ0. It is essential

to highlight that these conditions require the absolute value of the smallest non-zero coefficient to

be at least of the order of the `∞-rate of convergence of α̂ to α0.

There exists a trade-off in deciding whether to include this assumption. If included, the con-

struction of confidence bands for parameters doesn’t yield uniformly valid results over any `0-ball

B(s0), as the result relies on minj∈J(δ0) |δ
(j)
0 | > 3Cλ for validity extends beyond the complement of

every such `0-ball.

On the other hand, without this assumption, the condition δ̃(τ̂) 6= 0 is sufficient to imply the

true model is nonlinear. However, the condition δ̃(τ̂) = 0 is not sufficient to imply the true model is

linear.

7.10 Asymptotic Distribution of Threshold Parameter

To develop the asymptotic properties of the threshold parameter estimator, we rely on the empirical

process results introduced by Hansen (2000) and adopt the shrinking-threshold-effect framework. In

this framework, the threshold effect diminishes as the sample size tends to infinity. By constructing

a likelihood ratio (LR) statistic, we can derive inferences regarding the threshold parameter.

Assumption 8. (i) For some fixed δ∗0 <∞ and 0 < ϕ < 1
2 , let δ0 = n−ϕδ∗0 and n−ϕ‖δ∗0‖1 > 0.

(ii) E
[
XiX

′
iU

2
i |Qi = τ

]
is continuous and bounded when τ is in a neighborhood of τ0.

5Note that since we are only interested in finding out whether δ0 is nonzero or not, one can simply threshold δ̂.
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(iii) For any η > 0 and τ1, τ2 ∈ T such that wpa1,

sup
|τ−τ0|<η

∣∣∣∣∣ 1n
n∑
i=1

UiX
′
iδ0 [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ≤ λ(
√
η)$

2
,(7.117)

sup
1≤j,l≤p

sup
|τ−τ0|<η

1

n

n∑
i=1

∣∣∣X(j)
i X

(l)
i

∣∣∣ |1 (Qi < τ0)− 1 (Qi < τ)| ≤ C5(η)$,(7.118)

sup
1≤j,l≤p

sup
|τ−τ0|<η

‖δ0‖1

∣∣∣∣∣ 1n
n∑
i=1

UiX
(j)
i [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ≤ λ(
√
η)$

2
,(7.119)

where 0 < ϕ < 1
2 , $ > 1

1−2ϕ .

(iv) s0, $, ϕ,n, and p are such that
s20 log p

n$(1−2ϕ)−1 ‖δ0‖21 = op(1),
√

log p
n1−2ϕ = op(1), ‖δ0‖41

log p
n = op(1).

Assumption 8 is an extension of the fixed dimension case in the literature when working with a

fixed regressor design(e.g., Hansen (2000)). Assumption 8 (i) has been widely used in the threshold

model to obtain a tractable asymptotic distribution for the least squares estimator of τ(e.g., Hansen

(2000)) The re-normalization is to force δ0 to be small, reducing the information in the sample

concerning the threshold and hence slowing down the rate of convergence of the threshold estimate.

This assumption need not be viewed as very restrictive since the rate at which δ0 decreases to zero

can be set quite low. It does suggest, however, that the asymptotic approximation is more likely to

provide good approximations when δ0 is small relative to the case where δ0 is large. The unknown

parameter 0 < ϕ < 1
2 reflects the difficulty of estimating and affects the identification and estimation

of the change point. Both the rate of convergence and the asymptotic distribution depend on. In

Assumption 8 (iii), (7.119) implies (7.117).

The following arguments are parallel to those in Lemma 11, Lemma 13, Theorem 1, and Theorem

2 of Hansen (2000). To describe the asymptotic distribution, we introduce additional notations. For

any v ∈ Ψ , an arbitrary compact set, let

∆n(v) = n [Sn(α̂(τ̂), τ0) + λ ‖D(τ0)α̂(τ̂)‖1]− n
[
Sn(α̂(τ̂), τ0 +

v

n1−2ϕ
) + λ

∥∥∥D(τ0 +
v

n1−2ϕ
)α̂(τ̂)

∥∥∥
1

]
Let v̂ = n1−2ϕ(τ̂ − τ0), we can then derive the process using (2.4)

argmaxv∆n(v)

=argmaxvSn(α̂(τ̂), τ0) + λ ‖D(τ0)α̂(τ̂)‖1 − Sn(α̂(τ̂), τ0 +
v

n1−2ϕ
)− λ

∥∥∥D(τ0 +
v

n1−2ϕ
)α̂(τ̂)

∥∥∥
1

=v̂,

(7.120)

as Sn(α̂(τ̂), τ̂) + λ ‖D(τ̂)α̂(τ̂)‖1 represents the minimum over τ ∈ T.
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∆n(v)

=δ̂(τ̂)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))′(X(τ0 +

v

n1−2ϕ
)δ̂(τ̂)− 2δ̂(τ̂)(X(τ0 +

v

n1−2ϕ
)−X(τ0))U

+2δ̂(τ̂)(X(τ0 +
v

n1−2ϕ
)−X(τ0))′(X(τ0 +

v

n1−2ϕ
)(β̂(τ̂)− β0))

+nλ
∥∥∥D(τ0 +

v

n1−2ϕ
)α(τ̂)

∥∥∥
1
− nλ ‖D(τ0)α(τ̂)‖1

=δ′0(X(τ0 +
v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)δ0 − 2δ′0(X(τ0 +

v

n1−2ϕ
)−X(τ0))′U

−2(δ̂(τ̂)− δ0)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))′U

+2δ̂(τ̂)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)(β̂(τ̂)− β0)

+(δ̂(τ̂) + δ0)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)(δ̂(τ̂)− δ0)

+nλ
∥∥∥D(τ0 +

v

n1−2ϕ
)α(τ̂)

∥∥∥
1
− nλ ‖D(τ0)α(τ̂)‖1

(7.121)

Regarding the second term in the last equation in (7.121), we introduce additional notations. Let

Rn(v) =
√
n1−2ϕ√
n

∑n
i=1 δ

∗
0
′(Xi(τ0 + v

n1−2ϕ )−Xi(τ0))Ui and Vn(v) = n1−2ϕ

n

∑n
i=1 δ

∗
0
′(Xi(τ0 + v

n1−2ϕ )−
Xi(τ0))(Xi(τ0 + v

n1−2ϕ )−Xi(τ0))′δ∗0U
2
i . First, we show for any given v the convergence of the finite-

dimensional distributions of Rn(v) to those of B(v). It suffices to show the first and second terms

in the last equation in (7.121) converge somewhere correspondingly, and then show the convergence

of ∆n(v).

Lemma 24. Under Assumption 1,2 and 8, for any v ∈ Ψ , a arbitrary compact set,

δ′0(X(τ0 +
v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)δ0

p→ vδ∗0
′E [XiX

′
i|Qi = τ0] δ∗0

and

Rn(v) B(v),

where B(v) can be written as
√
δ∗0
′E [XiX ′iU

2
i |Qi = τ ] δ∗0W (v), and W (v) is a standard Brownian

motion.

The notation Rn(v) B(v) defines a general concept of convergence in distribution introduced

by Dudley (1985).
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Proof. To show the first part of the lemma,

E
[
δ′0(X(τ0 +

v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)δ0

]
=δ′0E

[
(X(τ0 +

v

n1−2ϕ
)′X(τ0 +

v

n1−2ϕ
)−X(τ0)′(X(τ0 +

v

n1−2ϕ
)
]
δ0

=
n1−2ϕ

n
δ∗0
′E
[
X(τ0 +

v

n1−2ϕ
)′X(τ0 +

v

n1−2ϕ
)−X(τ0)′X(τ0)

]
δ∗0

=n1−2ϕδ∗0
′E

[
1

n
X(τ0 +

v

n1−2ϕ
)′X(τ0 +

v

n1−2ϕ
)−X(τ0)′X(τ0)

]
δ∗0

=n1−2ϕδ∗0
′E

[
1

n

n∑
i=1

XiX
′
i

[
1
(
Qi < τ0 +

v

n1−2ϕ

)
− 1 (Qi < τ0)

]
U2
i

]
δ∗0

=n1−2ϕδ∗0
′E
[
XiX

′
i|τ0 ≤ Qi ≤ τ0 +

v

n1−2ϕ

]
δ∗0

p→vδ∗0
′E [XiX

′
i|Qi = τ0] δ∗0

(7.122)

as n→∞.

E
[
δ′0(X(τ0 +

v

n1−2ϕ
)−X(τ0))′(X(τ0 +

v

n1−2ϕ
)δ0 − E

[
δ′0(X(τ0 +

v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)δ0
]]2

=E
[
δ′0

[
X(τ0 +

v

n1−2ϕ
)′X(τ0 +

v

n1−2ϕ
)− E

[
X(τ0 +

v

n1−2ϕ
)′X(τ0 +

v

n1−2ϕ
)
]
−X(τ0)′X(τ0) + E

[
X(τ0)′X(τ0)

]]
δ0

]2
≤E

[
‖δ0‖21

[
‖ 1

n
Xi(τ0 + v)′Xi(τ0 + v)− E [Xi(τ0 + v)′Xi(τ0 + v)] ‖∞ + ‖ 1

n
Xi(τ0)′Xi(τ0)− E [Xi(τ0)′Xi(τ0)] ‖∞

]]2

p→‖δ0‖41Op(
log p

n
)

(7.123)

where we used Lemma 6 in the last step. Combine the above with Markov’s inequality,

δ′0(X(τ0 +
v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)δ0

p→ vδ∗0
′E [XiX

′
i|Qi = τ0] δ∗0 .

Our proof proceeds by establishing the convergence of the finite-dimensional distributions of

Rn(v) to those of B(v) for any given v, then extending that by showing the tightness of Rn(v).

E [Vn(v)]

=E

[
n1−2ϕ

n

n∑
i=1

δ∗0
′XiX

′
iδ
∗
0

[
1
(
Qi < τ0 +

v

n1−2ϕ

)
− 1 (Qi < τ0)

]
U2
i

]

=

n∑
i=1

E

[
n1−2ϕ

n
δ∗0
′XiX

′
iδ
∗
0

[
1
(
Qi < τ0 +

v

n1−2ϕ

)
− 1 (Qi < τ0)

]
U2
i

]
p→vδ∗0

′E
[
XiX

′
iU

2
i |Qi = τ

]
δ∗0

(7.124)
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E [Vn(v)− E[Vn(v)]]
2

=E

[
n1−2ϕ

n

n∑
i=1

δ∗0
′XiX

′
iδ
∗
0 [1 (Qi < τ0)− 1 (Qi < τ)]U2

i − E

[
n1−2ϕ

n

n∑
i=1

δ∗0
′XiX

′
iδ
∗
0 [1 (Qi < τ0)− 1 (Qi < τ)]U2

i

]]

=n1−2ϕE

[
1

n

n∑
i=1

δ∗0
′XiX

′
iδ
∗
0 [1 (Qi < τ0)− 1 (Qi < τ)]U2

i − E

[
1

n

n∑
i=1

δ∗0
′XiX

′
iδ
∗
0 [1 (Qi < τ0)− 1 (Qi < τ)]U2

i

]]

=n1−2ϕE

[
1

n

n∑
i=1

δ∗0
′XiX

′
iδ
∗
0 [1 (Qi < τ0)− 1 (Qi < τ)]U2

i − E

[
1

n

n∑
i=1

δ∗0
′XiX

′
iδ
∗
0 [1 (Qi < τ0)− 1 (Qi < τ)]U2

i

]]

≤n1−2ϕE

[
‖δ∗0‖21

[
‖ 1

n
Xi(τ0 + v)′Xi(τ0 + v)− E [Xi(τ0 + v)′Xi(τ0 + v)] ‖∞ + ‖ 1

n
Xi(τ0)′Xi(τ0)− E [Xi(τ0)′Xi(τ0)] ‖∞

]]
p→0

(7.125)

which establishes that Vn(v)
p→ |v|δ∗0

′E
[
XiX

′
iU

2
i |Qi = τ

]
δ∗0 by Markov’s inequality.

Since {Xi, Ui, Qi}ni=1 is an independent and identically distributed sequence, E [Rn(v)] = 0.

We conclude that Rn(v)
d→ N(0, |v|δ∗0

′E
[
XiX

′
iU

2
i |Qi = τ

]
δ∗0) for any fix v. This argument can be

extended to include any finite collection [v1, · · · vk], to yield the convergence of the finite-dimensional

distributions of Rn(v) to those of B(v).

Then we show the tightness of Rn(v). Fix η > 0 and set τ1 = τ0 + v1
n1−2ϕ , then by Assumption

8(7.117),

sup
v1≤v≤v1+η

Rn(v)−Rn(v1) ≤ sup
v1≤v≤v1+η

Rn(v)−Rn(0)+ sup
v1≤v≤v1+η

Rn(0)−Rn(v1) ≤ 1

2
λn1−$( 1

2−ϕ)[(
√
v)$+(

√
v1)$].

Thus, P{supv1≤v≤v1+η |Rn(v) − Rn(v1)| > λn1− 1
2$(1−2ϕ)(

√
v)$} → 0, as n → ∞. So Rn(v) is

tight.

As Rn(v) is tight, we conclude that Rn(v) B(v).

In next part, we present an auxiliary technical lemma and its proof. We start with some matrix

norm inequalities. Let A be a generic q × p matrix and x a p× 1 vector and z a q × 1 vector.

Lemma 25.

x′Az ≤ ‖x‖1‖A‖∞‖z‖1

Proof. Observe that

x′Az ≤ ‖x‖1‖Az‖∞ ≤ ‖x‖1‖A‖∞‖z‖1

by Hölder’s inequality.
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Lemma 26. Under Assumption 1,2 and 8, for any v ∈ Ψ ,on any compact set,

∆n(v) ∆(v),

where ∆(v) = −|v|δ∗0
′E [XiX

′
i|Qi = τ0] δ∗0 + 2

√
δ∗0
′E [XiX ′iU

2
i |Qi = τ ] δ∗0W (v), and W (v) is a stan-

dard Brownian motion.

Proof. Rearranging (7.121), yields

∆n(v) = δ′0(X(τ0 +
v

n1−2ϕ
)−X(τ0))X(τ0 +

v

n1−2ϕ
)′δ0 + 2Rn(v) + Υ(v),(7.126)

where

Υ(v) = −2(δ̂(τ̂)− δ0)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))U

+2δ̂(τ̂)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))X(τ0 +

v

n1−2ϕ
)′(β̂(τ̂)− β0)

+(δ̂(τ̂) + δ0)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))X(τ0 +

v

n1−2ϕ
)′(δ̂(τ̂)− δ0)

+nλ
∥∥∥D(τ0 +

v

n1−2ϕ
)α(τ̂)

∥∥∥
1
− nλ ‖D(τ0)α(τ̂)‖1

(7.127)
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It suffices to show Υ(v)⇒ 0. Note that by triangle inequality and Hölder’s inequality

nλ
∥∥∥D(τ0 +

v

n1−2ϕ
)α(τ̂)

∥∥∥
1
− nλ ‖D(τ0)α(τ̂)‖1

≤nλ
∥∥∥(D(τ0 +

v

n1−2ϕ
)−D(τ0)

)
α(τ̂)

∥∥∥
1

=nλ

∣∣∣∣∣∣
p∑
j=1

(
‖X(j)(τ0 +

v

n1−2ϕ
)‖n − ‖X(j)(τ0)‖n

)
δ̂(j)(τ̂)

∣∣∣∣∣∣
≤nλ

∣∣∣∣∣∣
p∑
j=1

‖X(j)(τ0 +
v

n1−2ϕ
)−X(j)(τ0)‖nδ̂(j)(τ̂)

∣∣∣∣∣∣
≤nλ

(
max
j=1···p

∥∥∥X(j)(τ0 +
v

n1−2ϕ
)−X(j)(τ0)

∥∥∥
n

)∥∥∥δ̂(τ̂)
∥∥∥

1

≤nλ
√

(
v

n1−2ϕ
)$
∥∥∥δ̂(τ̂)

∥∥∥
1

≤nλ
√

(
v

n1−2ϕ
)$ (‖δ0‖1 + Cs0λ)

≤nλ
√

(
v

n1−2ϕ
)$
(
n−ϕ ‖δ∗0‖1 + Cs0λ

)
≤Cv$2

( √
log p ‖δ∗0‖1√
n(1−2ϕ)($−1)

+
s0 log p√
n(1−2ϕ)$

)
=Op

( √
log p ‖δ∗0‖1√
n(1−2ϕ)($−1)

+
s0 log p√
n(1−2ϕ)$

)

(7.128)

where the last inequality is by Assumption 8 (7.118), Theorem 1 or 2.

Note that by Hölder’s inequality and Assumption 8 (7.119)

2(δ̂(τ̂)− δ0)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))U

≤2‖δ̂(τ̂)− δ0‖1 sup
1≤j≤p

sup
|τ−τ0|< v

n1−2ϕ

∣∣∣∣∣
n∑
i=1

UiX
(j)
i [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣
≤‖δ̂(τ̂)− δ0‖1n

λ(
√

v
n1−2ϕ )$

‖δ0‖1

≤C s0 log p

n−ϕ‖δ∗0‖1

√
(

v

n1−2ϕ
)$

=Cv
$
2

s0 log p

‖δ∗0‖1
√
n(1−2ϕ)$−2$

=Op

(
s0 log p

‖δ∗0‖1
√
n(1−2ϕ)$−2$

)
.

(7.129)
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By Lemma 25 and Assumption 8 (7.118)

2δ̂(τ̂)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)(β̂(τ̂)− β0)

=2(δ̂(τ̂)′ − δ′0 + δ′0)(X(τ0 +
v

n1−2ϕ
)−X(τ0))′X(τ0 +

v

n1−2ϕ
)(β̂(τ̂)− β0)

≤2‖δ̂(τ̂)− δ0‖1 sup
1≤j,l≤p

sup
|τ−τ0|< v

n1−2ϕ

∣∣∣∣∣
n∑
i=1

X
(j)
i X

(l)
i [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ‖β̂(τ̂)− β0‖1

+2‖δ0‖1 sup
1≤j,l≤p

sup
|τ−τ0|< v

n1−2ϕ

∣∣∣∣∣
n∑
i=1

X
(j)
i X

(l)
i [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ‖β̂(τ̂)− β0‖1

≤C(
v

n1−2ϕ
)$n(

s0

√
log p√
n

)2 + C(
v

n1−2ϕ
)$n

s0

√
log p√
n
‖δ0‖1

(7.130)

By Lemma 25 and Assumption 8 (7.118)

(δ̂(τ̂) + δ0)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))X(τ0 +

v

n1−2ϕ
)′(δ̂(τ̂)− δ0)

=(δ̂(τ̂)− δ0 + 2δ0)′(X(τ0 +
v

n1−2ϕ
)−X(τ0))X(τ0 +

v

n1−2ϕ
)′(δ̂(τ̂)− δ0)

≤‖δ̂(τ̂)− δ0‖1 sup
1≤j,l≤p

sup
|τ−τ0|< v

n1−2ϕ

∣∣∣∣∣
n∑
i=1

X
(j)
i X

(l)
i [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ‖δ̂(τ̂)− δ0‖1

+2‖δ0‖1 sup
1≤j,l≤p

sup
|τ−τ0|< v

n1−2ϕ

∣∣∣∣∣
n∑
i=1

X
(j)
i X

(l)
i [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ‖δ̂(τ̂)− δ0‖1

≤C(
v

n1−2ϕ
)$n(

s0

√
log p√
n

)2 + C(
v

n1−2ϕ
)$n

s0

√
log p√
n
‖δ0‖1.

(7.131)

Thus,Υ(v) 0. Combine with Lemma 24,

∆n(v) ∆(v).
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Lemma 27. Under Assumption 1,2 and 8,

n1−2ϕ(τ̂ − τ0)
d→ ωT,

where ω =
δ∗0
′E[XiX′iU

2
i |Qi=τ]δ

∗
0

(δ∗0
′E[XiX′i|Qi=τ0]δ∗0 )2

and T = argmaxr

[
− |r|2 +W (r)

]
.

W (r) is defined as a two-sided Brownian motion on the real line,

W (r) =

{
W1(r), if r ≥ 0,

W2(r), if r < 0.

where W1(r) and W2(r) are independent standard Brownian motions on [0,∞).

Proof. By Theorem 2,

n1−2ϕ(τ̂ − τ0) ≤ C s0 log p

n2ϕ
= Op(1)

and by Lemma 26

∆n(v) ∆(v).

Next, as limv→∞
W (v)
v = 0, lim|v|→∞∆(v) = −∞. Then the limit functional ∆(v) is continuous,

so Q(v) has a unique maximum. Therefore, all conditions of Theorem 2.7 of Kim and Pollard (1990)

are satisfied, which implies

n1−2ϕ(τ̂ − τ0)
d→ argmaxvQ(v).

Making the change-of-variables v =
δ∗0
′E[XiX′iU

2
i |Qi=τ]δ

∗
0

(δ∗0
′E[XiX′i|Qi=τ0]δ∗0 )2

r, we can re-write the asymptotic dis-

tribution as

argmaxvQ(v) =
δ∗0
′E
[
XiX

′
iU

2
i |Qi = τ

]
δ∗0

(δ∗0
′E [XiX ′i|Qi = τ0] δ∗0)2

argmaxr

[
−|r|

2
+W (r)

]

To test hypothesis H0 : τ = τ0, a standard approach is to use the likelihood ratio statistic. Let

LRn(τ) = n
Sn(α̂(τ),τ)+λ‖D(τ)α̂(τ)‖1−Sn(α̂(τ̂),τ̂)−λ‖D(τ̂)α̂(τ̂)‖1

Sn(α̂(τ̂),τ̂)+λ‖D(τ̂)α̂(τ̂)‖1

Lemma 28. Under Assumption 1,2 and 8,

LRn(τ)
d→ %2Λ,

where %2 =
δ∗0
′E[XiX′iU

2
i |Qi=τ]δ

∗
0

δ∗0
′E[XiX′i|Qi=τ0]δ∗0σ2

and Λ = maxr

[
− |r|2 +W (r)

]
.

The distribution function of Λ is P{Λ < x} = (1− e− x
2

2 )2.

Proof. We note that

Sn(α̂(τ̂), τ̂) =
1

n

n∑
i=1

Ûi(τ̂)2

and

λ ‖D(τ̂)α̂(τ̂)‖1
p→ 0.
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(Sn(α̂(τ̂), τ̂) + λ ‖D(τ̂)α̂(τ̂)‖1)LRn(τ0)−∆n(v̂)

=Sn(α̂(τ0), τ0) + λ ‖D(τ0)α̂(τ0)‖1 − Sn(α̂(τ̂), τ0)− λ ‖D(τ̂)α̂(τ0)‖1
=(α̂(τ0)− α̂(τ̂))′X(τ0)′X(τ0)(α̂(τ0)− α̂(τ̂))

p→ 0.

(7.132)

LRn(τ0) =
∆n(n1−2ϕ(τ0 − τ̂))

Sn(α̂(τ̂), τ̂) + λ ‖D(τ̂)α̂(τ̂)‖1
=

Supv∆n(v)

Sn(α̂(τ̂), τ̂) + λ ‖D(τ̂)α̂(τ̂)‖1
d→ Supv∆(v)

σ2
(7.133)

by continuous mapping theorem. This limiting distribution equals

1

σ2
Supv

[
−vδ∗0

′E [XiX
′
i|Qi = τ0] δ∗0 + 2

√
|v|δ∗0

′E [XiX ′iU
2
i |Qi = τ ] δ∗0W (v)

]
=
δ∗0
′E
[
XiX

′
iU

2
i |Qi = τ

]
δ∗0

δ∗0
′E [XiX ′i|Qi = τ0] δ∗0σ

2
sup
r

[
−|r|

2
+W (r)

]
= %2Λ

(7.134)

To find the distribution function of Λ, note that

sup
r

[
−|r|

2
+W (r)

]
= 2 max

[
sup
r>0

[−|r|
2

+W (r)], sup
r<0

[−|r|
2

+W (r)]]

]
= 2 max [Λ+,Λ−] .

which becomes the two-sided Brownian motion, as in Hansen (2000). [Λ+,Λ−] are iid exponential

random variables with distribution P{Λ+ < x} = 1− e−x. see Bhattacharya and Brockwell 1976.

Thus

P{Λ < x} = P{2 max [Λ+,Λ−] < x} = P{2Λ+ < x}P{2Λ− < x} = (1− e− x
2

2 )2.

Our Likelihood ratio test corresponds to a modified version of the LR Test used in Hansen

(2000). The asymptotic distribution of Lemma 28 depends on the nuisance parameter %2, which can

be constructed by following Section 3.4 in Hansen (2000). We can then obtain a confidence interval

for τ .
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